• String Solar Power Inverter 10kw-20kw-US, ETL System 1
  • String Solar Power Inverter 10kw-20kw-US, ETL System 2
  • String Solar Power Inverter 10kw-20kw-US, ETL System 3
String Solar Power Inverter 10kw-20kw-US, ETL

String Solar Power Inverter 10kw-20kw-US, ETL

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT OR LC
Min Order Qty:
5 watt
Supply Capability:
10000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

String Solar Power Inverter 10kw-20kw-US, ETL


  • Specifications

    Maximum efficiency of 98%
    Multi MPP controller
    MTL String
    Bluetooth technology&Sound control

    PV Inverter 10000UE,12000UE,18000UE,20000UE-US Series



    Leading - edge Technology
    High efficiency of 97.5% delivery more energy
    Dual independent MPP tracking lead to optimal energy harvesting
    Integrated DC disconnect switch
    Consistent and stable performance across entire input voltage and
    output power range
    True three-phase transformerless GT topology
    Bluetooth / RF technology / Wi-Fi
    Sound control, easy installation maintenance procedure
    Newest generation IGBTs and advanced MPPT algorithms
    Comprehensive protection for IGBTs, overvoltage, islanding,
    short-circuit,overload,overheat,etc
    Flexible system design with safety fuse module and lightening
    proof module



  • Model

    Specification

    10000TL3-US

    12000TL-US

    18000TL-US

    20000TL-US

    Input data(DC)

    Max. recommended PV power

    12500W

    15000W

    21600W

    24000W

    Max. DC Power

    10500W

    12500W

    18750W

    20850W

    Max. DC voltage

    600V

    600V

    600V

    600V

    Start voltage

    120V

    120V

    120V

    120V

    DC nominal voltage

    375V

    375V

    375V

    375V

    PV voltage range

    80V-600V

    80V-600V

    80V-600V

    80V-600V

    MPP voltage range(Full load)

    250V-600V

    250V-600V

    250V-600V

    250V-600V

    Max. input current of the MPP tracker A/tracker B

    21A/21A

    25A/25A

    38A/38A

    42A/42A

    Max. input short circuit current

    32A/32A

    32A/32A

    50A/50A

    50A/50A

    Number of independent MPP trackers/strings per MPP tracker

    2/3

    2/3

    2/6

    2/6

    Output data(AC)

    Nominal output power

    10000W

    12000W

    18000W

    20000W

    Nominal AC voltage

    480V

    480V

    480V

    480V

    AC voltage range

    422-528VAC

    422-528VAC

    422-528VAC

    422-528VAC

    Nominal AC grid frequency

    60 Hz

    60 Hz

    60 Hz

    60 Hz

    AC grid frequency range

    59.3-60.5 Hz

    59.3-60.5 Hz

    59.3-60.5 Hz

    59.3-60.5 Hz

    Max. output current(cos φ=1)

    12.0A

    14.5A

    21.5A

    24A

    Power factor(cos φ)

    >0.99         (0.9 Leading to 0.9 Lagging)

    >0.99         (0.9 Leading to 0.9 Lagging)

    >0.99         (0.9 Leading to 0.9 Lagging)

    >0.99         (0.9 Leading to 0.9 Lagging)

    Harmonics

    <3%< span="">

    <3%< span="">

    <3%< span="">

    <3%< span="">

    Grid connection type

    3/N/E

    3/N/E

    3/N/E

    3/N/E

    Efficiency

    Max. efficiency

    97%

    97%

    97.5%

    97.5%

    CEC-Weighted efficiency

    95.5%

    95.5%

    96%

    96.5%

    MPPT efficiency

    99.5%

    99.5%

    99.5%

    99.5%

    Protection devices

    DC reverse-polarity protection

    yes

    yes

    yes

    yes

    Input over voltage protection -Varistor

    yes

    yes

    yes

    yes

    DC switch for each MPP tracker

    yes

    yes

    yes

    yes

    Input over voltage protection -DIN rail surge arrester(Option)

    Class II

    Class II

    Class II

    Class II

    DC insulation measure

    yes

    yes

    yes

    yes

    AC short circuit protection

    yes

    yes

    yes

    yes

    Output over voltage protection -Varistor

    yes

    yes

    yes

    yes

    Output over voltage protection -DIN rail surge arrester(Option)

    Class II

    Class II

    Class II

    Class II

    String fuse type/size(Option)

    15A/600VDC 10*38mm

    15A/600VDC 10*38mm

    15A/600VDC 10*38mm

    15A/600VDC 10*38mm

    General Data

    Dimensions(W*H*D)

    530*705*247mm 20.8/27.6/9.7inch

    530*705*247mm 20.8/27.6/9.7inch

    650*740*247mm  25.6/29.1/9.7inch

    650*740*247mm 25.6/29.1/9.7inch

    Weight

    46kg/101.5lb

    46kg/101.5lb

    63kg/138.9lb

    63kg/138.9lb

    Operating ambient temperature range

    –25°C ... +60°C –13°F ... +140°F (Derating above 40°C/104°F)

    –25°C ... +60°C –13°F ... +140°F (Derating above 40°C/104°F)

    –25°C ... +60°C –13°F ... +140°F (Derating above 40°C/104°F)

    –25°C ... +60°C –13°F ... +140°F (Derating above 40°C/104°F)

    Noise emission

    ≤50dB(A)

    ≤50dB(A)

    ≤50dB(A)

    ≤50dB(A)

    Relative Humidity

    0~95%

    0~95%

    0~95%

    0~95%

    Altitude

    ≤2000m/6560ft

    Self Consumption night

    < 3 W

    < 3 W

    < 3 W

    < 3 W

    Topology

    Transformerless

    Transformerless

    Transformerless

    Transformerless

    Cooling concept

    Fan Cool

    Fan Cool

    Fan Cool

    Fan Cool

    Electronics protection rating /connection area

    NEMA 3R

    NEMA 3R

    NEMA 3R

    NEMA 3R

    Features

    Display

    Graphic

    Graphic

    Graphic

    Graphic

    Interface:RS232/RS485/ Bluetooth/RF/Zigbee/Wifi

    yes/yes/opt/opt /opt/opt

    yes/yes/opt/opt /opt/opt

    yes/yes/opt/opt /opt/opt

    yes/yes/opt/opt /opt/opt

    Warranty:10 years /15 years

    yes/opt

    yes/opt

    yes/opt

    yes/opt

    Certificates and approvals

    UL1741,UL1998,IEEE1547,FCC part 15(class B),CSA C22.2 No.107.1


  • String Solar Power Inverter 10kw-20kw-US, ETL


  • String Solar Power Inverter 10kw-20kw-US, ETL




Q:How much maintenance is required for a solar inverter?
Solar inverters typically require minimal maintenance. Most modern inverters are designed to be reliable and durable, requiring little to no maintenance throughout their lifespan. However, occasional cleaning of the inverter's vents and ensuring proper ventilation can help optimize its performance. Additionally, monitoring the inverter's performance and checking for any error messages or unusual behavior can help identify and address any potential issues. Overall, the maintenance required for a solar inverter is generally minimal, making it a low-maintenance component of a solar system.
Q:How does a solar inverter handle power factor correction?
A solar inverter handles power factor correction by continuously monitoring the power factor of the electrical load and adjusting its operation accordingly. It applies various control techniques to ensure that the power factor is maintained close to unity, ultimately improving the efficiency and stability of the solar power system.
Q:Can a solar inverter be used with solar-powered desalination systems?
Yes, a solar inverter can be used with solar-powered desalination systems. A solar inverter is essential in converting the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used to operate the desalination system. This allows for the efficient utilization of solar energy for powering the desalination process.
Q:Can a solar inverter be installed indoors or outdoors?
A solar inverter can be installed both indoors and outdoors, depending on the specific requirements and preferences of the installation.
Q:What is the role of power ramp rate control in a solar inverter?
The role of power ramp rate control in a solar inverter is to ensure a smooth and controlled increase or decrease in power output from the solar panels. This control mechanism is important to prevent sudden changes in power generation that can lead to instability in the electrical grid. By gradually adjusting the power output, the solar inverter helps to maintain grid stability, avoid voltage and frequency fluctuations, and ensure a reliable and consistent energy supply.
Q:How does a solar inverter handle voltage dip and interruption?
A solar inverter handles voltage dip and interruption by continuously monitoring the incoming grid voltage. In case of a voltage dip, it utilizes its internal control mechanisms to stabilize and regulate the output voltage, ensuring a consistent power supply to the connected solar panels. In the event of a complete interruption of grid power, the inverter quickly switches to an off-grid mode, where it utilizes the solar energy stored in batteries (if available) to continue powering the connected loads. This way, it effectively mitigates the impact of voltage fluctuations and interruptions, ensuring uninterrupted power supply from the solar panels.
Q:What is the maximum output power of a solar inverter?
The maximum output power of a solar inverter depends on its capacity and rating. It can range from a few hundred watts for residential inverters to several megawatts for commercial or utility-scale inverters.
Q:How do you calculate the maximum power point voltage for a solar inverter?
To calculate the maximum power point voltage for a solar inverter, you need to determine the voltage at which the solar panels generate the maximum power output. This is done by varying the load resistance and measuring the corresponding power output. The maximum power point voltage is the voltage at which the power output is highest.
Q:Can a solar inverter be used with solar-powered electric fences?
Yes, a solar inverter can be used with solar-powered electric fences. Solar inverters are used to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various electrical devices, including electric fences. By connecting a solar inverter to the solar panels of a solar-powered electric fence system, the DC power generated by the panels can be converted into the AC power required to operate the electric fence.
Q:What is the maximum current output of a solar inverter?
The maximum current output of a solar inverter depends on its size and specifications. In general, smaller residential inverters may have a maximum output current of around 8-12 amps, while larger commercial or utility-scale inverters can go up to several hundred amps. It is important to select an inverter that matches the specific requirements of the solar PV system to ensure optimal performance and safety.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords