• Steel Tunnel for Formwork and Scaffolding systems System 1
  • Steel Tunnel for Formwork and Scaffolding systems System 2
Steel Tunnel for Formwork and Scaffolding systems

Steel Tunnel for Formwork and Scaffolding systems

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50 m²
Supply Capability:
1000 m²/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Building Tunnel Formwork

A compositional steel formwork system mainly used in the building which has regular structure

without beams, the excellent formwork system can make the integral pouring for the wall & slab

easily achieved.


Characteristics:

◆ High stiffness, make perfect shape for concrete.

◆ Easy operation, save labor and force.

◆ Fast forming, repeatedly turnover.


Q:How does steel formwork handle complex geometries?
Steel formwork is able to handle complex geometries due to its inherent strength and flexibility. The steel panels can be easily cut and shaped to fit intricate designs, allowing for the creation of complex shapes and curves. Additionally, steel formwork can be assembled and disassembled, making it highly adaptable to different geometries and construction requirements. The rigidity and stability of steel also ensure that the formwork maintains its shape during concrete pouring, resulting in precise and accurate structures. Overall, steel formwork offers the versatility and durability needed to effectively handle complex geometries in construction projects.
Q:How does steel formwork contribute to the overall accuracy of concrete placement?
There are several ways in which steel formwork contributes to the accuracy of concrete placement. Firstly, it provides a strong and stable structure, ensuring that the concrete is poured and cured in the desired shape and dimensions. The steel panels are designed to be resistant to deformation, reducing the risk of the formwork shifting or warping during pouring. Moreover, steel formwork allows for precise control over alignment and leveling. The panels can be easily adjusted and secured, ensuring that the concrete is poured at the intended level and alignment. This is particularly important for projects that require high accuracy, such as those with intricate architectural designs or precise measurements. Additionally, steel formwork offers the advantage of reusability. Unlike traditional wooden formwork, which can only be used a limited number of times, steel formwork can be used multiple times without compromising its structural integrity. This contributes to cost-effectiveness and consistent accuracy in concrete placement across various projects. Furthermore, the smooth surface of steel formwork helps achieve a high-quality finish on the concrete surface. The smooth panels minimize the risk of surface imperfections, ensuring a consistent texture and appearance. This is especially important for projects where the concrete will be exposed, such as architectural features or decorative elements. In conclusion, steel formwork is essential for maintaining accuracy in concrete placement. Its rigidity, adjustability, reusability, and smooth surface all contribute to achieving precise dimensions, alignment, and finish. This makes steel formwork a vital tool in construction projects that require high levels of accuracy and quality.
Q:How does steel formwork handle concrete vibration and air entrapment?
Steel formwork is highly effective in handling concrete vibration and minimizing air entrapment during the pouring and curing process. Firstly, steel formwork is known for its high strength and rigidity, which allows it to withstand the intense vibrations caused by concrete compaction. When concrete is poured into steel formwork, the formwork itself acts as a barrier, preventing excessive movement or deformation that could lead to the formation of voids or air pockets. This ensures that the concrete is evenly distributed and compacted throughout the structure. Additionally, steel formwork is designed with tight joints and smooth surfaces, which helps in reducing air entrapment. The joints are tightly sealed to prevent any leakage, which could result in air being trapped within the concrete. This is particularly important as air pockets can weaken the structural integrity and durability of the concrete. The smooth surfaces also aid in the easy flow and consolidation of the concrete, reducing the chances of air entrapment. Furthermore, steel formwork can be easily customized and adjusted to fit the specific requirements of the construction project. This allows for precise and accurate placement of the formwork, ensuring that the concrete is poured and compacted in the desired manner. By having complete control over the formwork, the risk of air entrapment can be minimized, resulting in a more durable and reliable concrete structure. In conclusion, steel formwork is an excellent choice for handling concrete vibration and air entrapment. Its strength, rigidity, tight joints, and smooth surfaces provide the necessary stability and control during the pouring and compaction process. By using steel formwork, construction professionals can ensure that the concrete is properly consolidated and free from air pockets, resulting in a high-quality and long-lasting structure.
Q:Are there any specific design considerations for steel formwork?
Yes, there are specific design considerations for steel formwork. These include factors such as the strength and stability of the steel structure, the weight-bearing capacity of the formwork, ease of assembly and disassembly, compatibility with different concrete mixtures, and the ability to withstand various site conditions such as weather and construction loads. Additionally, the design should also consider the reusability and durability of the steel formwork system to ensure cost-effectiveness and sustainability in construction projects.
Q:What are the different types of scaffolding used with steel formwork?
There are several different types of scaffolding that can be used with steel formwork, each with their own unique features and benefits. 1. Tube and Coupler Scaffolding: This is the most commonly used type of scaffolding with steel formwork. It consists of vertical tubes connected by couplers, which allow for easy adjustment and flexibility in height and width. It is known for its strength and stability, making it suitable for heavy-duty construction projects. 2. H-frame Scaffolding: This type of scaffolding is similar to the tube and coupler system, but it features H-shaped frames instead of vertical tubes. It is lightweight and easy to assemble and disassemble, making it ideal for small-scale construction projects or areas with limited space. 3. Cuplock Scaffolding: Cuplock scaffolding is a modular system that uses pre-fabricated components, including vertical standards with cup joints and horizontal ledgers. It is quick to assemble and dismantle, making it a popular choice for time-sensitive projects. Cuplock scaffolding is also known for its versatility, as it can be used for both straight and curved structures. 4. Ringlock Scaffolding: This type of scaffolding is similar to cuplock scaffolding, but it uses a rosette joint system instead of cups. This allows for greater flexibility in assembling and adjusting the scaffolding. Ringlock scaffolding is known for its durability and high load-bearing capacity, making it suitable for heavy construction projects. 5. Kwikstage Scaffolding: Kwikstage scaffolding is a modular system that uses pre-fabricated components, including standards, ledgers, and transoms. It is quick to assemble and dismantle, and it offers excellent flexibility in terms of height and width adjustments. Kwikstage scaffolding is commonly used in construction projects that require frequent movement and repositioning of scaffolding. Overall, the choice of scaffolding used with steel formwork depends on the specific requirements of the construction project, including factors such as load-bearing capacity, flexibility, ease of assembly, and durability.
Q:How does steel formwork perform in seismic zones?
Due to its high strength and durability, steel formwork is an excellent choice for seismic zones. The robustness of steel enables it to withstand the intense shaking and vibrations caused by earthquakes, as it has outstanding load-bearing capacity and resistance to bending and shearing forces. During an earthquake, seismic zones experience significant ground movement, which exerts immense pressure on the formwork system. However, steel formwork remains rigid and strong, preventing any significant deformation or damage. This ensures the stability and integrity of the structure both during and after the seismic event. Furthermore, steel formwork provides flexibility in design and construction, allowing for reinforced concrete structures that can better handle seismic loads. Additional reinforcement elements, such as steel bars and mesh, can be incorporated with the use of steel formwork, enhancing overall strength and ductility. This helps dissipate the energy generated by seismic forces and reduces the risk of structural failure. In addition to its performance, steel formwork is also cost-effective and sustainable in seismic zones. It can be easily dismantled and reassembled, making it reusable and facilitating quick repair and reconstruction in the event of earthquake damage. This minimizes downtime and ensures the safety of occupants. In conclusion, steel formwork is a reliable and resilient choice for construction in seismic zones. Its strength, durability, and flexibility make it well-suited to withstand the forces generated by earthquakes, ensuring the safety and stability of structures in these high-risk areas.
Q:Is steel formwork more expensive than other types of formwork?
Various factors, such as project size, complexity, material availability, labor costs, and market conditions, contribute to the cost of steel formwork. Generally, steel formwork tends to be pricier compared to wood or aluminum options. Steel formwork offers multiple advantages, including high durability, reusability, and the ability to bear heavy loads. However, these benefits come at a higher cost. The initial investment for steel formwork is greater due to material expenses and the need for skilled labor during fabrication and installation. In contrast, wood or aluminum formwork may have a lower initial price, but they lack the same durability and load-bearing capacity as steel formwork. Consequently, they may require frequent repairs or replacements, leading to increased long-term costs. Ultimately, the decision on formwork material depends on project requirements, budget limitations, and the expected number of uses. Despite the higher upfront cost, steel formwork often proves to be a better investment due to its durability and reusability.
Q:How does steel formwork handle concrete shrinkage and expansion?
Steel formwork is a versatile and durable option for handling concrete shrinkage and expansion. One of the key advantages of using steel formwork is its ability to withstand the forces exerted by the concrete during shrinkage and expansion. Concrete shrinkage occurs as the water in the mixture evaporates, causing the concrete to contract. Steel formwork is well-suited to handle this shrinkage because it provides a rigid structure that can resist the inward force exerted by the contracting concrete. The steel panels and beams used in steel formwork are robust and can maintain their shape under the pressure, ensuring that the formwork remains intact even as the concrete shrinks. On the other hand, concrete expansion can occur due to various factors such as temperature changes or moisture absorption. Steel formwork is designed to accommodate this expansion by incorporating expansion joints. These joints allow the concrete to expand and contract without causing any damage to the formwork. The joints can be easily adjusted to accommodate the expansion, ensuring that the formwork remains stable and secure. In addition to its strength and flexibility, steel formwork also offers other benefits when it comes to handling concrete shrinkage and expansion. It is highly reusable, which means that it can be dismantled and reassembled for use in multiple projects. This not only reduces the overall cost of construction but also allows for easy adjustments to be made in case any changes are required due to concrete shrinkage or expansion. Furthermore, steel formwork provides a smooth and even surface finish to the concrete, minimizing the chances of cracking or unevenness caused by shrinkage. This ensures that the final concrete structure is of high quality and meets the desired specifications. In summary, steel formwork is a reliable and effective solution for handling concrete shrinkage and expansion. Its strength, flexibility, and ability to accommodate these forces make it a preferred choice for construction projects. By using steel formwork, builders can ensure that their concrete structures remain stable, durable, and free from any damage caused by shrinkage or expansion.
Q:How does steel formwork handle different concrete surface protection methods?
Steel formwork offers a flexible and long-lasting solution for constructing concrete structures, with the ability to effectively accommodate various methods of concrete surface protection. Typically made from steel plates or frames, the formwork provides a sturdy and rigid support system for the wet concrete. When it comes to safeguarding the concrete surface, there are multiple approaches that can be employed. These include the application of surface coatings, the use of form release agents, and the incorporation of different types of form liners. Steel formwork is capable of effortlessly accommodating these approaches and ensuring their effectiveness. For instance, when applying a surface coating to safeguard the concrete, steel formwork delivers a smooth and uniform surface that facilitates an even and consistent application of the coating. The steel formwork is resistant to damage caused by coating materials and can withstand the pressure and weight of the wet concrete during the curing process. Likewise, when utilizing form release agents, steel formwork guarantees proper adhesion and prevents any sticking or bonding between the concrete and the formwork. The smooth and non-porous surface of the steel formwork allows for easy application and removal of the form release agents, ensuring a clean and well-protected concrete surface. Moreover, steel formwork can accommodate the utilization of various types of form liners, which are employed to create decorative or textured finishes on the concrete surface. The form liners can be easily attached to the steel formwork to achieve the desired texture or pattern, and the sturdy nature of steel ensures that the form liners remain securely in place throughout the pouring and curing process. In conclusion, steel formwork is highly compatible with different methods of concrete surface protection. Its strength, durability, and versatility enable the easy application of coatings, form release agents, and form liners, resulting in a well-protected and visually appealing concrete surface.
Q:Can steel formwork be used for both slab and beam construction?
Indeed, steel formwork is applicable for both slab and beam construction. Within the construction industry, steel formwork proves to be a flexible and long-lasting alternative for constructing slabs and beams. It furnishes a robust and inflexible framework that can endure the weight and pressure exerted by the poured concrete. With easy assembly and disassembly, steel formwork emerges as a fitting choice for diverse construction undertakings. Its sturdiness and steadiness render it an optimal selection for both slab and beam construction, guaranteeing that the concrete structures adhere to the necessary specifications and can adeptly bear the loads they are designed for.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords