• Steel Billets/Blooms by Continue Casting Blast Furnace System 1
  • Steel Billets/Blooms by Continue Casting Blast Furnace System 2
Steel Billets/Blooms by Continue Casting Blast Furnace

Steel Billets/Blooms by Continue Casting Blast Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 Steel Billets/Blooms by Continue Casting Blast Furnace

 

1.Structure of  Steel Billets/Blooms by Continue Casting Blast Furnace

 

Continue Casting Steel Billet Manufactured By Blasting Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of Steel Billets/Blooms by Continue Casting Blast Furnace.

Continue Casting Steel Billet Manufactured By Blasting Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

      There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.

 

 

3.  Steel Billets/Blooms by Continue Casting Blast Furnace Images

 

 

 

Steel Billets/Blooms by Continue Casting Blast Furnace

Steel Billets/Blooms by Continue Casting Blast Furnace

 

 

 

4.  Steel Billets/Blooms by Continue Casting Blast FurnaceSpecification

 Continue Casting Steel Billet Manufactured By Blasting Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of  Steel Billets/Blooms by Continue Casting Blast Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How about your company

A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

②How to guarantee the quality of the products

We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

 

③How do you determine the billet section size?

 Determination of billet section size in addition to considering the deformation of rolled piece to have enough quantity to meet the finished productThe quality requirements, but also should consider to roll strength and rolling bite into the limitations. The deformation size has a great influence on the product performance.Can make the metal internal organization and deformationPerformance can not meet the quality requirements.Such as high speed steel must have enough deformation,The carbide networkTo be broken or heavy rail and seamlessSteel pipeBy the total elongation coefficient of steel ingot to the finished product usually must alsoGuarantee up to50). 

Q:How are steel billets prepared for further processing?
Steel billets go through a series of steps to prepare them for further processing. These steps include heating, shaping, and cooling. The initial step in the preparation process involves heating the steel billets in a furnace to a specific temperature known as the reheat temperature. This temperature is essential as it makes the steel billets malleable and easier to shape. Once the billets reach the reheat temperature, they are transferred to a shaping machine, usually a rolling mill. The rolling mill applies pressure to the heated billets, causing them to undergo plastic deformation. Depending on the desired end product, the rolling mill can shape the steel billets into various forms such as bars, rods, or sheets. After shaping, the steel billets are rapidly cooled through a process called quenching. Quenching helps to harden the steel and improve its overall strength and durability. The cooling method can differ based on the specific requirements of the steel, with options such as air cooling, water quenching, or oil quenching. Once the billets have been shaped and quenched, they may undergo additional processing steps like surface treatment or further heat treatments. These processes, such as galvanizing, tempering, or annealing, help achieve specific properties or surface finishes. In summary, the preparation of steel billets for further processing involves heating them to a reheat temperature, shaping them using a rolling mill, quenching them for hardening, and potentially undergoing additional treatments to meet specific requirements. These steps are vital in ensuring that the steel billets are ready for their intended applications in various industries.
Q:What are the market trends and growth prospects for steel billets?
The market trends for steel billets indicate steady growth prospects. With the increasing demand for steel in various sectors such as construction, automotive, and infrastructure, the demand for steel billets is expected to rise. Additionally, the growing focus on sustainable and eco-friendly construction materials is likely to drive the market further. Furthermore, the expanding urbanization and industrialization in emerging economies present significant growth opportunities for the steel billets market. Overall, the market for steel billets is expected to experience positive growth in the coming years.
Q:How do steel billets contribute to the overall vibration resistance of a product?
Steel billets are an essential component in enhancing the overall vibration resistance of a product. The high-strength properties of steel make it an ideal material for reducing vibrations and improving product stability. Steel billets are typically used as a raw material in the manufacturing process, where they are further processed into various shapes and forms. The dense and uniform structure of steel billets allows them to absorb and dissipate vibration energy effectively. When integrated into a product, steel billets provide additional mass, which helps dampen vibrations by absorbing and distributing the energy throughout the structure. This mass acts as a stabilizing force, preventing excessive movement and reducing the amplitude of vibrations. Moreover, steel billets possess excellent mechanical properties, such as high tensile strength and stiffness, which contribute to the overall vibration resistance of a product. These properties enable steel billets to withstand dynamic forces and resist deformation under vibration, ensuring the structural integrity of the product. Additionally, steel billets can be engineered to have specific geometries and cross-sectional shapes that further enhance their vibration resistance. For example, the use of round or square billets with smooth surfaces minimizes stress concentration points and reduces the risk of fatigue failure. By optimizing the design and dimensions of steel billets, manufacturers can tailor the vibration resistance of a product to meet specific requirements. In summary, steel billets play a crucial role in improving the overall vibration resistance of a product. Their high mass, dense structure, and superior mechanical properties enable them to absorb and dissipate vibration energy, stabilize the product, and enhance its structural integrity. By utilizing steel billets in the manufacturing process, manufacturers can ensure that their products are more resistant to vibrations, leading to improved performance and longevity.
Q:How are steel billets used in the production of structural steel sections?
Steel billets play a crucial role in the manufacturing of structural steel sections, serving as the primary raw material. Initially, the billets are melted in a furnace to produce molten steel. The molten steel is then shaped into billets of specific sizes and shapes, which can vary depending on the desired structural steel section. Typically, the billets are rectangular or square. After solidification, the steel billets are reheated in another furnace to a specific temperature for the process of hot rolling. Hot rolling involves passing the billets through rolling mills to reduce their cross-sectional area and shape them into the desired structural steel sections. This process involves applying high pressure and temperature, causing the billets to deform and elongate. Subsequently, the hot rolled steel sections are cooled and undergo further processing, including straightening, cutting, and sometimes additional heat treatment to enhance their mechanical properties. These steps ensure that the structural steel sections meet the required specifications for strength, durability, and dimensional accuracy. The structural steel sections produced from steel billets are widely utilized in various construction projects. They are commonly employed in the construction of buildings, bridges, infrastructure, and other structures where strength and load-bearing capacity are crucial. These sections can be found in beams, columns, channels, angles, and other shapes, providing the necessary support and structural integrity. In conclusion, steel billets are of utmost importance in the production of structural steel sections. They serve as the starting material that undergoes a series of manufacturing processes to create the final products used in construction and other industries.
Q:How are steel billets used in the manufacturing of pipeline fittings?
Steel billets are an essential component in the manufacturing process of pipeline fittings. These fittings are used to connect and control the flow of fluids or gases in pipelines. The first step in using steel billets for pipeline fittings is the selection of high-quality, durable steel. The billets are typically made from low carbon steel, which ensures strength and resistance to corrosion. Once the appropriate steel billets are chosen, they are heated in a furnace to a specific temperature, known as the forging temperature. At this temperature, the steel becomes malleable and can be shaped into various forms. The hot steel billets are then placed into a forging press, where they are subjected to immense pressure. This pressure deforms the steel billets, causing them to take on the desired shape and size. The process is known as forging, and it ensures the strength and integrity of the pipeline fittings. After forging, the steel billets are further processed to achieve the final shape of the pipeline fittings. This may involve machining, welding, or other processes depending on the specific requirements of the fittings. Once the final shape is achieved, the fittings are inspected for quality and undergo various tests to ensure they meet industry standards. These tests include dimensional checks, non-destructive testing, and pressure testing, among others. Once the pipeline fittings pass all the necessary tests, they are ready for installation in pipelines. These fittings play a crucial role in connecting different sections of the pipeline, allowing for the controlled flow of fluids or gases. They provide a secure and leak-free connection, ensuring the safe and efficient operation of the pipeline system. In summary, steel billets are used in the manufacturing of pipeline fittings by undergoing a series of processes including heating, forging, machining, and testing. These fittings play a vital role in connecting and controlling the flow of fluids or gases in pipelines, ensuring the safe and efficient operation of the overall system.
Q:What are the different surface finishes available for stainless steel billets?
There are several surface finishes available for stainless steel billets, depending on the desired aesthetic appearance and functional requirements. Some of the most common surface finishes for stainless steel billets include: 1. Mill Finish: This is the standard finish produced by the steel mill during the manufacturing process. It has a dull appearance with visible oxidation marks and can vary in smoothness. 2. Hot Rolled: This finish is achieved by heating the stainless steel billet and then rolling it through a series of rollers. It results in a rougher surface with visible scale and a characteristic orange peel texture. 3. Cold Rolled: This finish is obtained by subjecting the stainless steel billet to cold rolling, which reduces its thickness and improves its surface smoothness. It has a slightly reflective appearance and is often used for applications requiring a smooth finish. 4. Brushed Finish: Also known as satin finish, this surface finish is achieved by mechanically brushing the stainless steel billet with abrasive materials. It creates a consistent linear pattern, giving the steel a matte appearance. 5. Polished Finish: This finish involves polishing the stainless steel billet using abrasives to create a smooth and reflective surface. The level of polish can vary from a low-gloss satin finish to a mirror-like, highly reflective finish. 6. Bead Blasted Finish: In this finish, the stainless steel billet is bombarded with tiny glass or ceramic beads under high pressure, which creates a uniform matte texture. It is commonly used for architectural and decorative applications. 7. Electropolished Finish: This surface finish is achieved by immersing the stainless steel billet in an electrolyte bath and applying an electric current. It removes a thin layer of material, resulting in a smooth, reflective surface with improved corrosion resistance. These are just a few examples of the different surface finishes available for stainless steel billets. Each finish has its own unique characteristics and is chosen based on the specific requirements of the application, such as aesthetics, corrosion resistance, and ease of cleaning.
Q:How are steel billets made?
Steel billets are made through a process called casting. It starts with raw materials such as iron ore, coal, and limestone being melted in a blast furnace to produce molten iron. This molten iron is then further refined in a basic oxygen furnace or an electric arc furnace to adjust its composition and remove impurities. Once the desired composition is achieved, the molten iron is poured into a continuous casting machine. This machine consists of a water-cooled copper mold that shapes the molten iron into a solid billet. As the molten iron is poured into the mold, it rapidly cools and solidifies, forming a continuous length of solid steel. The billet is then cut to the desired length and transferred to a storage area to cool down further before further processing. The cooling process is crucial as it helps in improving the billet's internal structure and overall quality. After cooling, the steel billets can undergo various treatments such as heat treatment or surface conditioning to enhance their mechanical properties and surface finish. They can also be further processed into different shapes and sizes through rolling, forging, or extrusion to meet specific customer requirements. Overall, the production of steel billets involves melting the raw materials, refining the molten iron, casting it into a continuous mold, and subsequently cooling and processing the solid billets. This process ensures the production of high-quality steel billets that serve as crucial building blocks for various industries such as construction, automotive, and manufacturing.
Q:What are the different types of steel billet rolling mill defects?
There are several types of steel billet rolling mill defects that can occur during the rolling process. These defects can have various causes and can affect the quality and performance of the final product. Some of the common types of defects include: 1. Surface defects: These defects are visible on the surface of the rolled billet and can include scratches, cracks, pits, and scale. Surface defects can be caused by improper handling, inadequate lubrication, or excessive rolling pressures. 2. Shape defects: Shape defects refer to the deviations from the desired shape of the billet. These can include bowing, twisting, or excessive tapering. Shape defects can be caused by uneven cooling, improper alignment of the rolling mill, or incorrect rolling parameters. 3. Internal defects: Internal defects are defects that are not visible on the surface but can affect the structural integrity of the billet. These defects can include segregation, porosity, and inclusions. Internal defects can be caused by the presence of impurities in the raw material, improper heating or cooling, or inadequate quality control measures. 4. Dimensional defects: Dimensional defects refer to deviations from the desired dimensions of the billet, such as variations in length, width, or thickness. These defects can be caused by improper calibration of the rolling mill, incorrect rolling parameters, or inadequate quality control measures. 5. Metallurgical defects: Metallurgical defects are defects that occur due to improper metallurgical processes during rolling. These defects can include grain size variations, improper grain flow, or undesirable microstructure. Metallurgical defects can be caused by improper temperature control, inadequate alloying, or insufficient heat treatment. It is important for steel billet rolling mills to have proper quality control measures in place to identify and rectify these defects. Regular inspections, testing, and monitoring of the rolling process can help to minimize these defects and ensure the production of high-quality steel billets.
Q:Can steel billets be forged?
Indeed, steel billets have the capability to undergo forging, which is a widely employed technique for manipulating metals into desired configurations through the application of compressive forces. Steel billets, rectangular bars that serve as intermediate products, can be subjected to forging in order to convert them into a range of shapes, including bars, plates, and intricate geometries. When undertaking the forging process, the steel billets are first heated to a precise temperature to render them malleable, after which they are subjected to mechanical forces using hammers, presses, or other forging machinery. This process facilitates the shaping and compression of the billets, thereby enhancing their mechanical properties and bestowing them with specific characteristics that align with desired specifications. In summary, the forging of steel billets plays a vital role in the production of diverse metal components and products.
Q:How are steel billets used in the production of turbine blades?
Steel billets are used in the production of turbine blades as raw material. These billets are first forged into the desired shape and then undergo precision machining to achieve the required dimensions and finish. The steel billets provide the strength and durability necessary to withstand the high temperatures and forces experienced by turbine blades during operation.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords