• Steel Billet by Blast Furnace with Chromium System 1
  • Steel Billet by Blast Furnace with Chromium System 2
Steel Billet by Blast Furnace with Chromium

Steel Billet by Blast Furnace with Chromium

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Steel Billet by Blast Furnace with Chromium

 

1.Structure of Steel Billet by Blast Furnace with Chromium

 

Steel Billets Manufactured by Continue Casting is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of Steel Billet by Blast Furnace with Chromium.

Steel Billets Manufactured by Continue Casting section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

      There are three shapes of the steel billetssquare billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.

 

 

3. Steel Billet by Blast Furnace with Chromium Images

 

Steel Billet by Blast Furnace with Chromium

Steel Billet by Blast Furnace with Chromium

 

 

 

 

 

4. Steel Billet by Blast Furnace with Chromium Specification

Steel Billet by Blast Furnace with Chromium  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of Steel Billet by Blast Furnace with Chromium

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How about your company

A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

②How to guarantee the quality of the products

We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

 

③Could we arrange the SGS inspecting before shipment?

Yes, you can. We welcome this arrangment.

Q:How are steel billets tested for mechanical properties?
Steel billets are tested for mechanical properties using various methods to ensure their quality and suitability for specific applications. One common method is the tensile test, which involves pulling a small sample from the billet and subjecting it to a gradually increasing tensile force until it fractures. This test helps determine important mechanical properties such as ultimate tensile strength, yield strength, and elongation. Another method used is the hardness test, which measures the resistance of the billet's surface to indentation. This test provides information about the billet's hardness, which is crucial for assessing its ability to withstand wear and deformation. Additionally, the impact test is performed to evaluate the billet's toughness and ability to absorb energy. This involves striking a standardized sample with a pendulum and measuring the energy absorbed during fracture. The impact test is particularly important for applications where the steel billet is subjected to sudden loads or impacts. To assess the billet's ability to resist deformation, the compression test is employed. In this test, the billet is subjected to a compressive force until it deforms or fractures. The results obtained from this test help determine the billet's compressive strength and deformation characteristics. Furthermore, non-destructive testing methods such as ultrasonic testing and magnetic particle inspection are used to detect any internal defects or irregularities in the billet. These methods involve the use of specialized equipment to examine the billet's internal structure and identify any flaws that may compromise its mechanical properties. Overall, steel billets undergo a comprehensive range of tests to ensure their mechanical properties meet the required standards. These tests help guarantee the quality and reliability of the billets, enabling them to be used in various industries such as construction, automotive, and manufacturing.
Q:Are steel billets used in the renewable energy sector?
Yes, steel billets are used in the renewable energy sector. Steel is a versatile material that is used in the construction of various renewable energy infrastructure components. For example, steel billets are commonly used in the manufacturing of wind turbine towers, which are essential for the generation of wind energy. Steel billets provide the necessary strength and durability to support the enormous weight and withstand the harsh environmental conditions that wind turbines are exposed to. Additionally, steel billets are also utilized in the construction of solar power systems, such as solar panel mounting structures and support frames. These structures require a strong and reliable material like steel to ensure the stability and longevity of the solar panels. Therefore, steel billets play a crucial role in supporting and facilitating the growth of the renewable energy sector.
Q:Can steel billets be coated for improved corrosion resistance?
Yes, steel billets can be coated for improved corrosion resistance. Coating steel billets with a protective layer helps to prevent corrosion by acting as a barrier between the steel and its surrounding environment. There are several coating methods available for steel billets, including hot-dip galvanizing, electroplating, and powder coating. Hot-dip galvanizing involves immersing the steel billets in a bath of molten zinc, which forms a thick, durable coating on the surface. This zinc coating provides excellent corrosion protection, even in harsh environments. Moreover, it offers a sacrificial layer that corrodes preferentially to the steel, further enhancing its corrosion resistance. Electroplating is another commonly used method for coating steel billets. In this process, a thin layer of another metal, such as zinc, nickel, or chromium, is deposited onto the surface of the billets through an electrochemical reaction. The electroplated layer acts as a barrier against corrosion and can also provide aesthetic appeal. Powder coating is a technique where a dry powder is applied to the surface of the steel billets and then cured under heat to form a protective coating. This method offers excellent corrosion resistance and also provides additional benefits, such as improved impact resistance and flexibility. By applying suitable coatings to steel billets, their corrosion resistance can be significantly improved, increasing their lifespan and reducing maintenance requirements. However, the choice of coating method should consider factors such as the intended application, environmental conditions, and cost-effectiveness.
Q:Can steel billets be used in the production of energy infrastructure?
Yes, steel billets can be used in the production of energy infrastructure. Steel is a commonly used material in the construction of power plants, transmission towers, pipelines, and other energy-related structures due to its strength, durability, and resistance to corrosion. Steel billets are the raw form of steel that can be shaped and processed into various components required for energy infrastructure projects.
Q:Can steel billets be used in the production of oil and gas equipment?
Yes, steel billets can be used in the production of oil and gas equipment. Steel billets are semi-finished metal products that are commonly used as raw materials for the manufacturing of various industrial products, including oil and gas equipment. They can be further processed through hot rolling or forging to produce different components such as pipes, valves, flanges, and fittings that are essential for the oil and gas industry. The high strength and durability of steel make it an ideal material for withstanding the harsh conditions and high pressures encountered in oil and gas operations. Additionally, steel billets can be customized to meet specific requirements such as corrosion resistance, heat resistance, and mechanical properties, ensuring the suitability of the final product for its intended application in the oil and gas sector.
Q:What are the different surface defects found in alloy steel billets?
There are several different surface defects that can be found in alloy steel billets. These defects can occur during the production process and can have an impact on the quality and performance of the final product. Some of the common surface defects found in alloy steel billets include: 1. Scale: Scale is a thin layer of oxide that forms on the surface of the billet during the heating and cooling process. It can be caused by exposure to air or by the presence of impurities in the steel. Scale can negatively affect the surface finish and can also lead to corrosion. 2. Cracks: Cracks can occur on the surface of the billet due to various reasons such as improper cooling, excessive stress, or improper handling. These cracks can weaken the structural integrity of the billet and can lead to failure during subsequent processing or in the final product. 3. Pits: Pits are small depressions or cavities that can be found on the surface of the billet. They can be caused by the presence of impurities or by the reaction of the steel with the environment. Pits can affect the surface finish and can also act as stress concentration points, leading to further damage or failure. 4. Laminations: Laminations are layers or sheets of non-metallic material that can be found within the billet. They can occur due to incomplete bonding during the production process or due to the presence of impurities in the steel. Laminations can weaken the billet and can lead to failure under load. 5. Inclusions: Inclusions are non-metallic particles or impurities that can be found within the steel. They can be introduced during the production process or can be present in the raw materials. Inclusions can affect the mechanical properties of the steel and can lead to reduced strength, toughness, and ductility. 6. Decarburization: Decarburization is the loss of carbon from the surface of the steel. It can occur during the heating process or due to exposure to air. Decarburization can result in reduced hardness and strength in the affected area. It is important to detect and address these surface defects in alloy steel billets to ensure the production of high-quality and reliable products. Various inspection and testing methods, such as visual inspection, ultrasonic testing, and magnetic particle inspection, can be employed to identify and assess these defects.
Q:What are the different finishing processes used for steel billets?
There are several different finishing processes used for steel billets to achieve the desired surface quality and dimensions. These processes include: 1. Hot rolling: This process involves passing the steel billets through a series of heated rollers to reduce their thickness and shape them into the desired profile. It can be used to produce a variety of finished products, such as bars, rods, and structural shapes. 2. Cold drawing: In this process, the steel billets are pulled through a series of dies at room temperature to reduce their cross-sectional area and improve their surface finish. Cold drawing is commonly used to produce high-quality steel bars and wires with precise dimensions and a smooth surface. 3. Peeling: Peeling is a machining process in which a thin layer of material is removed from the surface of the steel billets using a cutting tool. This process helps to improve the surface finish, remove any defects, and achieve tight dimensional tolerances. 4. Grinding: Grinding involves using an abrasive wheel or belt to remove material from the surface of the steel billets. It is commonly used to remove surface defects, such as scale and rust, and to achieve a smooth and uniform surface finish. 5. Polishing: Polishing is a finishing process that involves using abrasive materials, such as polishing compounds and buffing wheels, to create a smooth and reflective surface on the steel billets. It is often used to enhance the aesthetic appeal of the finished product and improve its resistance to corrosion. 6. Coating: Coating is a process in which a protective layer is applied to the surface of the steel billets to improve their resistance to corrosion and other environmental factors. Common coating methods include galvanizing, where a layer of zinc is applied to the surface, and painting, where a layer of paint or other protective material is applied. Overall, these finishing processes are essential in ensuring that steel billets meet the required specifications and standards for their intended applications. They help to improve the surface finish, dimensional accuracy, and overall quality of the finished steel products.
Q:How are steel billets used in the manufacturing of heavy machinery?
Steel billets are an essential element in the production of heavy machinery. These billets are semi-finished steel products that are either hot-rolled or forged into specific shapes, typically squares or rectangles. To start utilizing steel billets for heavy machinery, they must first be heated to a high temperature, which makes them easier to manipulate and work with. Once heated, the billets are shaped and formed through various processes like extrusion, rolling, or forging. This enables manufacturers to create the necessary components and parts for heavy machinery, including gears, shafts, frames, and structural elements. The use of steel billets in heavy machinery manufacturing is crucial due to steel's inherent properties. Steel is renowned for its strength, durability, and resistance to wear and tear. These characteristics make it an ideal material for heavy machinery that experiences intense forces, vibrations, and harsh operating conditions. Furthermore, steel billets offer versatility in terms of customization and design. Manufacturers can modify the shape, size, and composition of the billets to meet the specific requirements of the heavy machinery being produced. This adaptability allows for the creation of intricate and complex components that can withstand the demands of heavy-duty applications. Once the steel billets are shaped into the desired components, they undergo further processes like heat treatment, machining, and finishing. These additional steps enhance the mechanical properties and precision of the final products, ensuring that they meet the necessary specifications and standards for heavy machinery manufacturing. In conclusion, steel billets play a crucial role in the production of heavy machinery. Their malleability, strength, and customization options make them an ideal material for creating durable and reliable components that can withstand the demands of heavy-duty applications.
Q:What are the main disadvantages of using steel billets?
There are several disadvantages associated with using steel billets in various industries. Firstly, one of the main drawbacks of steel billets is their high cost. Steel billets require a complex manufacturing process, involving melting and casting steel, which can be expensive. This cost is then transferred to the end product, making it less affordable for consumers. Secondly, steel billets tend to be heavy and bulky, making transportation and handling difficult. The weight and size of steel billets add to the overall logistical challenges in the supply chain, increasing costs and potentially causing delays. Another disadvantage is the limited availability of steel billets. Steel production requires a significant amount of resources and energy, and the availability of raw materials can be limited, leading to potential supply chain disruptions. This scarcity can negatively impact industries that rely heavily on steel billets for their operations. Furthermore, steel billets have limited shape flexibility. They are typically produced in standardized sizes and shapes, making it difficult to customize them for specific design requirements. This lack of flexibility can be a significant disadvantage in industries that require intricate and unique shapes for their products. Moreover, steel billets are prone to corrosion if not properly treated. The exposure to moisture and certain environments can cause rust and degradation, reducing the lifespan and durability of products made from steel billets. Regular maintenance and anti-corrosion treatments are essential to mitigate this disadvantage. Lastly, the production of steel billets has a significant environmental impact. The manufacturing process emits greenhouse gases and consumes large amounts of energy and water. These environmental concerns have led to increased scrutiny and regulations on steel production, adding additional costs and complexities to using steel billets. In conclusion, while steel billets have their advantages in terms of strength and durability, they also come with several drawbacks. These include high costs, transportation challenges, limited availability, lack of shape flexibility, susceptibility to corrosion, and environmental impact. It is crucial for industries to carefully consider these disadvantages when evaluating the use of steel billets in their operations.
Q:What are the main factors that determine the demand for steel billets in different industries?
The main factors that determine the demand for steel billets in different industries are the overall economic conditions, including GDP growth and industrial production, as well as the specific needs and requirements of each industry. Other factors include the level of infrastructure development, population growth, urbanization, and construction activities. Additionally, factors such as technological advancements, environmental regulations, and government policies can also influence the demand for steel billets in different industries.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords