• Round Bars Carbon Steel 1020  1045  1040 System 1
  • Round Bars Carbon Steel 1020  1045  1040 System 2
  • Round Bars Carbon Steel 1020  1045  1040 System 3
Round Bars Carbon Steel 1020  1045  1040

Round Bars Carbon Steel 1020 1045 1040

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Round Bar

Round Bars Carbon Steel 1020  1045  1040 

Product Information:

Material:High Quality Carbon Structural Steel 1020

Size:Diameter:10-700mm

Length:6000mm-12000mm

Origin place :Made In China

Delivery Condition:Hot rolled, cold drawn, forged

Surface require:Black, grinding, bright, polish

Heat treatment:Quenched, Tempered, annealed

Packing:Seaworthy packing ,wooden case ,carton,woven bag or at client's requires

Delivery time:According to order’s quantity.

Trade Term:EXW,FOB,CIF

Payments:T/T or L/C at sight

Port:China main Port, such as shanghai, Dalian, Shenzhen port.

MOQ:30 Metric Ton

MaterialAISI 1020, S20C, C22,1.0402Round barDia(mm)Max 700
ProcessEAF + LF + VD + Forged + Heat Treatment (optional)Length (mm)   Max 12000
Heat treatmentNormalized / Annealed / Quenched / temperedPlate barThickness(mm) Max 200
Delivery conditionHot forged +Rough machined (black surface after Q/T)+ Turned (optional)Width(mm)Max 3000
TestUltrasonic test according to SEP 1921-84 D/dLength (mm)   Max 12000

Product Overviews:

Product NameTypical GradesDiameter(mm)Standard adopted
Carbon Steel20 (1020/S20C/C22)Ø16-Ø300GB/SAE/JIS/DIN
40 (1040/S40C/C40)
45 (1045/S45C/C45)
Bearing SteelGCr9 (51100/SUJ1)Ø12-Ø250
GCr15 (52100/SUJ2/100Gr6)
GCr9SiMn (A485-Gr.1/SUJ3)
Cr-Mo Steel20Cr (5120/SCr420H/20Cr4)Ø12-Ø250
40Cr (5140/SCr440/41Cr4)
42CrMo(4140/SCM440/42CrMo4)
Gear Steel20CrNiMoØ16-Ø600
20CrMn(5115/SMnC420/20MnCr5)
20CrNiMo(8620/SNCM220/20CrMiMo2)

Product Show:

Round Bars Carbon Steel 1020  1045  1040

Our Advantages:

· Industry experience over 20 years.

· Shipment of goods -More than 70 countries worldwide.

· The most convenient transport and prompt delivery.

· Competitive price with best service.

· High technical production line with top quality products.

· High reputation based on best quality products.

 

With our experienced, enthusiastic and dynamic staffs, we assure to bring you the products with best quality, reasonable prices and good after-sales services under the motto: Friends First, Business After.

Communication, Experience, Expertise and Best efforts are our Promises to you.


Q:How does the microstructure of special steel affect its performance?
The microstructure of special steel plays a significant role in determining its performance. Special steels are alloyed with specific elements to enhance their properties and meet specific application requirements. The microstructure refers to the arrangement of the steel's crystalline grains and the presence of any phase transformations within the material. One critical aspect of the microstructure is the grain size. Fine-grained structures, achieved through controlled cooling or alloying additions, offer improved strength, hardness, and toughness. Smaller grain sizes hinder the movement of dislocations within the material, resulting in increased strength and hardness. This is particularly crucial in applications that require high strength-to-weight ratios, such as aerospace or automotive components. Another crucial factor is the presence of various phases in the microstructure. The addition of specific alloying elements can promote the formation of different phases, such as martensite, bainite, or ferrite. These phases have different mechanical properties, such as hardness, toughness, and corrosion resistance. By carefully controlling the microstructure, it is possible to tailor the steel's performance to specific applications. For example, martensitic structures offer high hardness and wear resistance, ideal for cutting tools, while bainitic structures provide a good balance of strength and toughness, suitable for structural components. Furthermore, the microstructure also governs the steel's response to heat treatment processes, such as quenching and tempering. Heat treatments can modify the microstructure to achieve desired mechanical properties, such as increasing hardness or improving resistance to fatigue. The microstructure's ability to transform during heat treatment allows for precise control over the steel's performance characteristics. In summary, the microstructure of special steel significantly affects its performance. Grain size, phase distribution, and response to heat treatment are all key factors that determine the steel's mechanical properties and suitability for specific applications. By understanding and manipulating the microstructure, engineers can design special steels with enhanced performance, meeting the stringent demands of various industries.
Q:Can special steel be used for medical implants?
Yes, special steel can be used for medical implants.
Q:How does special steel withstand high-velocity impacts?
Special steel is able to withstand high-velocity impacts due to its unique properties and composition. One key factor is its high strength and hardness, which allows it to resist deformation and fracture under extreme forces. Special steel also often contains alloying elements such as chromium, molybdenum, nickel, and vanadium, which contribute to its exceptional toughness and impact resistance. Furthermore, special steel is often heat-treated to enhance its mechanical properties. Through processes such as quenching and tempering, the steel's microstructure is altered, resulting in a fine-grained structure with improved strength and hardness. This heat treatment also enhances the steel's ability to absorb and dissipate energy during high-velocity impacts, reducing the risk of failure. Moreover, special steel is often designed with specific alloys and compositions to enhance its performance in particular applications. For example, some grades of steel are specifically engineered for armor applications, where they must withstand high-velocity impacts from projectiles. These steels may have additional elements such as boron or titanium, which further enhance their ability to resist penetration and deformation under extreme loads. In summary, special steel's ability to withstand high-velocity impacts is attributed to its high strength, hardness, toughness, and impact resistance. Its unique composition, heat treatment processes, and targeted design make it a reliable choice for applications where impact resistance is crucial.
Q:What are the different coating materials used for special steel?
There are several different coating materials used for special steel, including zinc, aluminum, nickel, tin, and epoxy-based coatings. These coatings are applied to enhance the corrosion resistance, improve durability, and provide a decorative finish to the special steel.
Q:How does the composition of special steel affect its mechanical properties?
The composition of special steel significantly affects its mechanical properties. Various alloying elements such as carbon, manganese, chromium, nickel, and others are added in specific quantities to enhance the steel's strength, hardness, toughness, and corrosion resistance. The presence and ratio of these elements determine the steel's microstructure, which in turn determines its mechanical properties. For example, higher carbon content increases hardness and strength, while manganese improves toughness. Similarly, chromium and nickel increase corrosion resistance and provide better heat resistance. Therefore, the composition of special steel plays a crucial role in defining its mechanical properties.
Q:How is special steel used in the textile supply chain?
Special steel is used in various ways in the textile supply chain. It is commonly utilized in the production of textile machinery such as spinning frames, looms, and knitting machines. Special steel components are crucial for ensuring the smooth operation and durability of these machines, allowing for efficient and high-quality textile production. Additionally, special steel is used in the manufacturing of textile cutting tools, needles, and other accessories, which play an important role in the fabric cutting and sewing processes. Overall, special steel's strength, resilience, and precision make it an essential material in the textile supply chain.
Q:What are the main applications of special steel in the mining equipment?
Special steel is widely used in mining equipment due to its high strength, durability, and resistance to corrosion. It is primarily used for components such as drill bits, cutting edges, crushers, conveyor systems, and buckets. The superior properties of special steel enable these mining equipment to withstand harsh operating conditions and enhance overall productivity and efficiency in the mining industry.
Q:What are the main characteristics of corrosion-resistant castings?
Corrosion-resistant castings have been designed to endure the destructive effects of corrosion, a natural process that causes the deterioration of metal surfaces due to chemical reactions. These castings possess several key features that render them impervious to corrosion. First and foremost, corrosion-resistant castings are fashioned from specific alloys or materials that possess inherent resistance to corrosion. These materials may consist of stainless steel, nickel-based alloys, or high-performance alloys such as Inconel or Hastelloy. These alloys contain elements like chromium, molybdenum, or nickel, which generate a protective layer on the casting's surface, preventing the infiltration of corrosive agents into the underlying metal. Secondly, meticulous casting techniques are employed in the production of these castings to ensure a solid and defect-free structure. This is crucial in warding off the penetration of corrosive substances into the castings. Techniques such as investment casting or vacuum casting are commonly utilized to achieve a high degree of precision and quality. An additional significant characteristic of corrosion-resistant castings is their ability to withstand various types of corrosion, including general corrosion, pitting corrosion, crevice corrosion, and stress corrosion cracking. General corrosion refers to the gradual and uniform deterioration of the metal surface, while pitting corrosion leads to the formation of localized holes or pits. Crevice corrosion occurs in confined spaces such as gaps or joints, and stress corrosion cracking arises from the combined effects of stress and a corrosive environment. Corrosion-resistant castings are designed to endure all these types of corrosion, ensuring long-lasting durability and dependability. Furthermore, corrosion-resistant castings often undergo additional surface treatments or coatings to enhance their resistance to corrosion. These treatments may encompass passivation, where the surface is treated chemically to create a protective oxide layer, or the application of protective coatings such as epoxy or polyurethane. These treatments provide an additional layer of defense against corrosive agents, prolonging the lifespan of the castings. In conclusion, the primary characteristics of corrosion-resistant castings include the utilization of corrosion-resistant alloys, meticulous casting techniques, resistance to various types of corrosion, and the application of surface treatments or coatings. These characteristics ensure that these castings can endure harsh environments and maintain their structural integrity over time, making them ideal for applications where corrosion poses a significant concern.
Q:How is special steel used in the production of bearings?
Special steel is used in the production of bearings due to its high strength, durability, and resistance to wear and corrosion. The use of special steel ensures that bearings can withstand heavy loads, high speeds, and harsh operating conditions, providing smooth and reliable performance. The steel used in bearings is carefully engineered to have specific properties, such as hardness and toughness, which are essential for their effective functioning.
Q:How does special steel compare to other materials like aluminum or titanium?
Special steel is known for its exceptional strength, durability, and resistance to corrosion, making it a popular choice for various applications. Compared to materials like aluminum or titanium, special steel often offers superior strength and toughness, making it suitable for heavy-duty industries such as construction, automotive, and aerospace. While aluminum is lightweight and has good corrosion resistance, it may lack the necessary strength for certain demanding applications. Titanium, on the other hand, is lightweight and possesses excellent strength-to-weight ratio, but it is more expensive and difficult to process than special steel. Ultimately, the choice between special steel, aluminum, or titanium depends on the specific requirements of the application at hand.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords