• Pure Sine Wave Inverter Home Inverter 600-3500W System 1
  • Pure Sine Wave Inverter Home Inverter 600-3500W System 2
  • Pure Sine Wave Inverter Home Inverter 600-3500W System 3
  • Pure Sine Wave Inverter Home Inverter 600-3500W System 4
Pure Sine Wave Inverter Home Inverter 600-3500W

Pure Sine Wave Inverter Home Inverter 600-3500W

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
100 pc
Supply Capability:
1000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Home Inverter 600-3500W

 

Home Inverter 600W-3500W is Pure sine wave output inverter which are specially used for house appliance such as TV, refrigerator, fan, air conditioner etc, and also it can be used as UPS for computers. That means It can supply power to various loads such as resitive load, inductive load, motors and rectifier load. It is equipped with programmable big current, 3 stages battery charger (10-70Amp adjustable charger) to run 10hrs longer backup time.

 

 

 

 Reliable, Durable and Economical Power for Grid and Mobile Applications

 Microprocessor based Inverter / Charger provides

 Ultra-clean pure sine wave output with less than 5% total harmonic distortion

 Supply energy to various loads such as resistive load, inductive load, motors and rectifier load.

 Control panel with large LCD

 Powerful 300% surge power

 Low sleep mode power consumption of less than 5W

 Phase & frequency synchronization auto-tracing for seamless transfer time

 Programmable big current, 3 stages battery charger

 Long backup time up to 10 hours (based on the battery bank and loads).

 Easy to install, easy to maintain, and built for years of reliable service

 

MODEL

600W

1000W

1600W

2500W

3500W

DC Input

Nominal input voltage

12V

24V

DC input voltage range

10-15V

20-30V

AC Input

Bypass voltage

0-264Vac for 220Vac/230Vac/240Vac, 0-132Vac for 100Vac/110Vac/120Vac

AC voltage

150-280Vac for 220Vac,160-290Vac for 230Vac,170-300Vac for 240Vac

65-130Vac for 100Vac, 75-140Vac for 110Vac, 85-150Vac for 120Vac

Nominal input frequency

50Hz/60Hz (Auto detection), 45-55Hz for 50Hz, 55-65Hz for 60Hz

Generator

Yes (generator power must be 1.5 times bigger than rated power of the inverter)

Output

DC mode output voltage

220V/230V/240VAC±5% or 100V/110V/120VAC ±5%

AC mode output voltage

174-241Vac for 220Vac,186-250Vac for 230Vac, 197-259Vac for 240Vac

76-111Vac for 100Vac, 87-120Vac for 110Vac, 99-129Vac for 120Vac

Nominal output frequency

50Hz/60Hz±0.3Hz(Auto Sensing)

Output waveform

Pure sine wave

Output power

600W

1000W

1600W

2500W

3500W

Efficiency

≥80%(inverter)

ECO mode

Settable(<3% load) to enter after 80s

No-load shutdown

Settable (<3% load) shutdown after 80s

Transfer time

≤10ms

Power factor

1.0

THD

<5%(Linear Load)

Inductive load

Yes

Motor load

Yes

Rectifier load

Yes

Overload Capability

AC mode: 105% 300s, 110% 120s, 125% 60s, 150% 10s ( transfer to bypass mode later)

Inverter mode: 105% 300s;110% 60s;125% 10s;150% 0.7s ( shut down later )

Battery

Adjustable charge current

Max 30A

Max 40A

Max 40A

Max 50A

Max 60A

Equalizing charge voltage

Single battery 14.1Vdc(default), 13.6-15Vdc adjustable

Floating charge voltage

Single battery 13.5Vdc(default), 13.2-14.6Vdc adjustable

Charge mode

3 stage charge mode

Battery Low Shutdown Point

Single battery 10.2Vdc(default),9.6-11.5Vdc adjustable

Reversed polarity notice

Buzzer

General

Human-machine interface

LCD& BUZZER

Operating temperature

0℃-40℃

Operating humidity

5%-95%RH

Forced air cooling

Variable Speed fans

Gross weight (Kg)

12.3

15

21.2

24.0

29.0

Dimensions (W*D*H) mm

293*280*160

310*447*208

310*478*208

Packing (W*D*H) mm

370*355*235

405*602*294

405*633*291

  • Q. How long the UPS to run when power goes?

    This can take 3 paths.
    1.You can pick a UPS that is rated for pretty much the full VA you need so it will be running at 100% of capability and will thus last 'n' minutes.
    2.You can pick a UPS that is rated at a much higher VA value than you really need so, for example, is running at 50% of capability and will thus last for longer than the UPS from option 1.
    3.You can use extra external battery packs to run for longer. If charging capability allows, the more and the bigger batteries you take with, the longer time UPS runs. 
    or using a generator after about 6 hours, it will be more cost-effective, with a short runtime UPS to bridge the generator start-up gap.

  • Q. What's lifetime of a UPS ?

    Most plug-in UPS are workable for at least five years. We'd advise you to change the batteries every three to four years. For larger equipment, we maintain equipment for twenty years old and still going strong.

  • Q. How to maintain a UPS ?

    There are three simple methods:  Never overload your UPS, never connect any home electronic devices such as cooling fan to your UPS. This may cause malfunction of your UPS. Discharge the battery in a consistent interval, once a month or once two months.  You can do this by turning on the UPS without connecting the mains.

Q:How does a three-phase solar inverter differ from a single-phase inverter?
A three-phase solar inverter differs from a single-phase inverter in terms of the number of phases they support. While a single-phase inverter is designed to work with a single-phase electrical system, a three-phase solar inverter is specifically designed to handle three-phase electrical systems. This means that a three-phase inverter can handle higher power loads and is more efficient in distributing power across the three phases, resulting in better overall performance and stability for three-phase electrical systems.
Q:What is the maximum number of parallel inverters that can be connected?
The maximum number of parallel inverters that can be connected depends on various factors such as the power rating, capacity, and design of the inverters, as well as the electrical system they are being connected to. It is best to consult the manufacturer's specifications and guidelines to determine the maximum number of parallel inverters that can be safely connected.
Q:How do you choose the right voltage rating for a solar inverter?
When choosing the right voltage rating for a solar inverter, it is important to consider a few factors. First, you need to determine the voltage of your solar panel array. This will help you match the inverter's voltage rating to ensure compatibility. Additionally, you should consider the voltage requirements of your electrical grid or any appliances you plan to power. The inverter's voltage rating should align with these requirements to ensure efficient energy conversion and safe operation. It is advisable to consult with a professional or an electrical engineer to help you select the appropriate voltage rating for your solar inverter based on your specific needs and system setup.
Q:Can a solar inverter be used with different grid voltages?
No, a solar inverter cannot be used with different grid voltages. Solar inverters are designed to convert the DC power generated by solar panels into AC power that matches the specific voltage and frequency of the grid. Using a solar inverter with different grid voltages can cause damage to the inverter and can also be a safety hazard.
Q:Can a solar inverter work during a power outage?
No, a solar inverter cannot work during a power outage unless it is specifically designed with a backup power supply or battery storage system.
Q:What are the typical efficiency ranges for different types of solar inverters?
The typical efficiency ranges for different types of solar inverters vary depending on the specific technology and design. However, in general, string inverters have an efficiency range of around 95% to 98%, while microinverters tend to have an efficiency range of about 96% to 99%. On the other hand, central inverters have a wider efficiency range, typically ranging from 95% to 99%. It's important to note that these efficiency ranges can also be influenced by factors such as temperature, load, and design variations among manufacturers.
Q:How does a solar inverter handle harmonic distortion?
A solar inverter handles harmonic distortion by incorporating filters and control algorithms that help mitigate and minimize harmonics in the system. These filters are designed to reduce harmonic current injection into the grid, ensuring compliance with power quality standards. Additionally, advanced control algorithms continuously monitor the inverter's output waveform and adjust its operation to reduce harmonic distortion and maintain clean power generation from the solar panels.
Q:Can a solar inverter be used with both AC and DC power sources?
No, a solar inverter is designed to convert DC power from solar panels into AC power for use in standard electrical systems. It cannot be used with both AC and DC power sources simultaneously.
Q:What is the role of a solar inverter in maintaining system stability?
The role of a solar inverter in maintaining system stability is to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used in homes or fed back into the electrical grid. The inverter also ensures that the output voltage and frequency of the AC electricity are within acceptable limits, allowing for seamless integration with the existing power grid. By regulating and stabilizing the electricity flow, the solar inverter helps maintain the overall stability and reliability of the solar power system.
Q:What are the potential risks of overcharging a battery connected to a solar inverter?
Overcharging a battery connected to a solar inverter can lead to several potential risks. One of the primary risks is a reduced lifespan of the battery. Overcharging can cause excessive heat and stress on the battery, leading to a shorter overall lifespan and reduced capacity over time. Another risk is the potential for thermal runaway or battery failure. Overcharging can cause the battery to become unstable, leading to a build-up of gases and potential leakage or explosion. Furthermore, overcharging can also result in increased maintenance costs. The battery may require frequent monitoring and maintenance to prevent overcharging, which can be time-consuming and costly. Lastly, overcharging can lead to inefficient energy storage. When a battery is overcharged, excess energy is wasted, reducing the overall efficiency of the solar energy system. To mitigate these risks, it is crucial to properly size and configure the solar inverter and battery system, ensuring that the battery is not subjected to excessive charging currents. Using appropriate charge controllers and monitoring systems can also help prevent overcharging and protect the battery from potential risks.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords