• Protection Platform for Formwork and Scaffolding systems System 1
  • Protection Platform for Formwork and Scaffolding systems System 2
Protection Platform for Formwork and Scaffolding systems

Protection Platform for Formwork and Scaffolding systems

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50 m²
Supply Capability:
1000 m²/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Protection Platform PP-50

A kind of new type construction protection system, applying operating platform and safer job

location for construction corps.


Characteristics:

◆ Easy and quick assembling.

◆ Lifted as a group, it is rapid and economic.

◆ Auto-climbing

◆ A safe and reliable anchor system

 1. Composition

 2. Assembly process of anchor system

(1) Embed V-climbing cone and anchor plate into the slab.

(2) Fix anchor shoe on the slab by tensile bolt.

(3) The fixed anchor shoe.

◆ High work efficiency with work platform and unload platform

◆ High light transmittance with the hollow block



Q:Can steel formwork be used for architectural features?
Yes, steel formwork can be used for architectural features. Steel formwork provides strength, durability, and flexibility, making it suitable for creating complex and intricate architectural designs. It allows for precise shaping, smooth finishes, and efficient construction processes, making it a popular choice for architectural features such as decorative facades, columns, beams, and other structural elements.
Q:How does steel formwork handle formwork removal and storage?
Steel formwork is known for its durability and strength, making it ideal for handling formwork removal and storage. After the concrete has cured, the steel formwork can be easily removed by dismantling the panels or frames. The components can then be cleaned, inspected, and prepared for storage or reuse. Due to their robust nature, steel formwork systems can withstand multiple uses, allowing for efficient storage and future construction projects.
Q:How does steel formwork affect the overall long-term performance of the structure?
The overall long-term performance of a structure can be significantly influenced by the use of steel formwork. One of the main advantages of steel formwork is its durability, as steel is a robust and resilient material that can endure heavy loads and extreme weather conditions, thereby ensuring the structure's longevity. The utilization of steel formwork provides a rigid and stable framework for pouring concrete. This, in turn, leads to a more precise and accurate construction process, ultimately resulting in a stronger and higher quality structure. Moreover, steel formwork allows for quicker construction as it can be easily assembled and disassembled, reducing the overall construction time. Additionally, steel formwork offers a smooth and flat surface finish, which is vital for the aesthetic appeal of the structure. The smooth surface reduces the need for additional finishing work, saving both time and money. Furthermore, the use of steel formwork guarantees proper support and reinforcement for the concrete, preventing issues such as cracking, sagging, or deformation over time. Another advantage of steel formwork is its reusability. Unlike traditional wooden formwork, steel formwork can be used multiple times, resulting in cost savings and a reduced environmental impact. The durability and strength of steel formwork enable it to endure the wear and tear of multiple uses, making it a more sustainable option. To summarize, steel formwork has a positive impact on the overall long-term performance of a structure by providing durability, strength, accuracy, and reusability. It ensures a construction process of high quality, resulting in a robust and aesthetically pleasing structure that can withstand the test of time.
Q:What are the common design considerations for steel formwork in cold climates?
Several factors need to be taken into account when designing steel formwork in cold climates to ensure its structural integrity, safety, and efficiency. These considerations are crucial in extreme weather conditions. 1. The selection of the appropriate steel grade is crucial to withstand low temperatures without compromising strength. It is essential to choose high-quality steel with good cold resistance properties to prevent brittleness and potential failure. 2. Insulation materials should be incorporated into the design to minimize heat loss during concrete curing. Insulating the formwork walls and base can prevent freezing, which may cause cracking and reduced structural integrity. 3. Steel contracts in cold temperatures, leading to misalignment and buckling of the formwork. To accommodate thermal expansion and contraction, it is important to include expansion joints or flexible connections in the formwork design. 4. Proper anchoring and support systems need to be incorporated into the formwork design to ensure stability and prevent shifting or settling, especially in cold climates with freeze-thaw cycles that cause significant ground movement. 5. Cold and humid environments can accelerate corrosion of steel. Enhancing durability and prolonging the lifespan of the steel formwork can be achieved by incorporating corrosion-resistant coatings or galvanizing. 6. The formwork design should take into consideration the additional loads imposed by accumulated snow in cold climates with heavy snowfall. This is necessary to prevent overloading and potential collapse of the structure. 7. Cold temperatures can affect the performance of fastening systems, such as bolts and screws. It is crucial to use appropriate fasteners that can withstand low temperatures and prevent loosening due to thermal contraction. 8. Considering the ease of assembly and dismantling of the formwork is important in cold climates where extreme temperatures may hinder construction activities. Designing the formwork system with easy-to-use connections and fasteners can improve efficiency and reduce construction time. By taking these common design considerations into account, engineers and designers can ensure that steel formwork in cold climates is safe, reliable, and capable of withstanding the harsh conditions.
Q:Can steel formwork be used for precast concrete stairs?
Indeed, precast concrete stairs can be constructed using steel formwork. Notably, steel formwork possesses exceptional durability and can withstand the immense weight and pressure exerted by the concrete during the casting process. As a result, it guarantees a smooth and consistent finish for the precast concrete stairs, thereby ensuring the creation of a top-notch end product. Moreover, steel formwork grants flexibility in terms of customization, enabling the production of various designs and dimensions for the precast concrete stairs. Furthermore, steel formwork can be reused multiple times, rendering it a cost-effective alternative for the production of precast concrete stairs. All in all, steel formwork emerges as a fitting choice for the construction of precast concrete stairs.
Q:What are the typical sheet thicknesses used in steel formwork panels?
Steel formwork panel thicknesses can vary depending on the specific application and requirements. Generally, sheet thicknesses between 6mm and 12mm are commonly used. Thicker sheets are preferred for heavy-duty applications or when higher load-bearing capacities are required. Conversely, thinner sheets are suitable for lighter applications or when weight reduction is a priority. When determining the appropriate sheet thickness for steel formwork panels, it is crucial to consider factors such as the formwork panel size, desired strength and durability, and anticipated loads.
Q:I would like to ask, large steel formwork and the average number of square meters of a template?
Single wage calculation, 9000 flat template assembly line
Q:How does steel formwork affect the overall sound insulation of a building?
The overall sound insulation of a building is not directly affected by steel formwork. The quality and design of the walls, floors, and ceilings are the main factors that determine sound insulation, regardless of the formwork material used. However, sound insulation may be indirectly influenced by steel formwork during the construction phase. Steel formwork is renowned for its rigidity and strength, which ensures precise and accurate pouring of concrete. This precise construction technique helps minimize gaps and imperfections that can occur during the concrete casting process. Consequently, steel formwork contributes to creating a smoother and more uniform concrete surface, reducing the possibility of sound leakage through cracks or joints. Additionally, steel formwork can be employed to create even and smooth surfaces, facilitating the installation of soundproofing materials like acoustic panels or insulation. These supplementary soundproofing measures, when incorporated during construction, can enhance the overall sound insulation of the building. It is important to recognize that although steel formwork can indirectly impact sound insulation during construction, the primary elements affecting sound insulation are the materials and techniques utilized in constructing walls, floors, and ceilings. Architectural design, insulation materials, and sealing techniques all play a crucial role in achieving optimal sound insulation levels.
Q:What are the considerations when designing steel formwork for slabs?
When designing steel formwork for slabs, several considerations need to be taken into account. Firstly, the load-bearing capacity of the formwork must be determined to ensure it can support the weight of the concrete during pouring and curing. Additionally, the formwork design should allow for easy installation and removal, as well as facilitate proper ventilation to prevent excessive heat and moisture buildup. It is also important to consider the size and shape of the slab, as well as any specific requirements for the project, to ensure the formwork can be tailored accordingly. Lastly, safety measures should be incorporated into the design, including adequate bracing and reinforcement, to ensure the stability and integrity of the formwork system during construction.
Q:How does steel formwork affect the overall maintenance requirements of the structure?
Steel formwork can significantly impact the maintenance requirements of a structure in a positive way. Its durability and strength make it resistant to wear and tear, reducing the need for frequent repairs or replacements. Additionally, steel formwork provides a smooth and even finish, minimizing the potential for cracks or other structural issues that could arise over time. This results in reduced maintenance costs and efforts, ensuring a longer lifespan for the structure.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords