poly solar module 250w

Ref Price:
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

OKorder Service Pledge

Quality Product

Order On-line Tracking

Timely Delivery

OKorder Service Pledge

Credit Rating

Credit Services

Credit Purchasing

Share to:

Product Description:

Solar Module


ABOUT YINGLI GREEN ENERGY

Yingli Green Energy Holding Company Limited (NYSE: YGE) is one of

the world’s largest fully vertically integrated PV manufacturers, which

markets its products under the brand “Yingli Solar“. With over 7.0GW

of modules installed globally, we are a leading solar energy company

built upon proven product reliability and sustainable performance. We

are the fi rst renewable energy company and the fi rst Chinese company

to sponsor the FIFA World CupTM.

PERFORMANCE

- High effi ciency, multicrystalline silicon solar cells with high transmission

and textured glass deliver a module effi ciency of up to 16.0%,

minimizing installation costs and maximizing the kWh output of your

system per unit area.

- Tight positive power tolerance of 0W to +5W ensures you receive

modules at or above nameplate power and contributes to minimizing

module mismatch losses leading to improved system yield.

- Top ranking in the “TÜV Rheinland Energy Yield Test” and the

“PHOTON Test” demonstrates high performance and annual energy

production.

RELIABILITY

- Tests by independent laboratories prove that Yingli Solar modules:

 Fully conform to certifi cation and regulatory standards.

 Withstand wind loads of up to 2.4kPa and snow loads of up to

5.4kPa, confi rming mechanical stability.

 Successfully endure ammonia and salt-mist exposure at the highest

severity level, ensuring their performance in adverse conditions.

- Manufacturing facility certifi ed by TÜV Rheinland to ISO 9001:2008,

ISO 14001:2004 and BS OHSAS 18001:2007.

WARRANTIES

- 10-year limited product warranty1.

- Limited power warranty1: 10 years at 91.2% of the minimal rated power

output, 25 years at 80.7% of the minimal rated power output.

1In compliance with our Warranty Terms and Conditions.

QUALIFICATIONS & CERTIFICATES

IEC 61215, IEC 61730, MCS, CE, ISO 9001:2008, ISO 14001:2004, BS OHSAS

18001:2007, PV Cycle, SA 8000

ELECTRICAL PERFORMANCE

Electrical parameters at Standard Test Conditions (STC)

Module type YLxxxP-29b (xxx=Pmax)

Power output Pmax W 260 255 250 245 240

Power output tolerances ΔPmax W 0 / + 5

Module effi ciency ηm % 16.0 15.7 15.4 15.1 14.8

Voltage at Pmax Vmpp V 30.3 30.0 29.8 29.6 29.3

Current at Pmax Impp A 8.59 8.49 8.39 8.28 8.18

Open-circuit voltage Voc V 37.7 37.7 37.6 37.5 37.5

Short-circuit current Isc A 9.09 9.01 8.92 8.83 8.75

Electrical parameters at Nominal Operating Cell Temperature (NOCT)

Power output Pmax W 189.7 186.0 182.4 178.7 175.1

Voltage at Pmax Vmpp V 27.6 27.4 27.2 27.0 26.8

Current at Pmax Impp A 6.87 6.79 6.71 6.62 6.54

Open-circuit voltage Voc V 34.8 34.8 34.7 34.6 34.6

Short-circuit current Isc A 7.35 7.28 7.21 7.14 7.07

STC: 1000W/m2 irradiance, 25°C cell temperature, AM1.5g spectrum according to EN 60904-3.

Average relative effi ciency reduction of 3.3% at 200W/m2 according to EN 60904-1.

NOCT: open-circuit module operation temperature at 800W/m2 irradiance, 20°C ambient temperature, 1m/s wind speed.

OPERATING CONDITIONS

Max. system voltage 1000VDC

Max. series fuse rating 15A

Limiting reverse current 15A

Operating temperature range -40°C to 85°C

Max. static load, front (e.g., snow) 5400Pa

Max. static load, back (e.g., wind) 2400Pa

Max. hailstone impact (diameter / velocity) 25mm / 23m/s

CONSTRUCTION MATERIALS

Front cover (material / thickness) low-iron tempered glass / 3.2mm

Cell (quantity / material / dimensions /

number of busbars)

60 / multicrystalline silicon / 156mm x 156mm / 2 or 3

Encapsulant (material) ethylene vinyl acetate (EVA)

Frame (material / color / anodization color /

edge sealing) anodized aluminum alloy / silver / clear / silicone or tape

Junction box (protection degree) ≥ IP65

Cable (length / cross-sectional area) 1000mm / 4mm2

Plug connector

(type / protection degree) MC4 / IP67 or YT08-1 / IP67 or Amphenol H4 / IP68

PACKAGING SPECIFICATIONS

Number of modules per pallet 29

Number of pallets per 40' container 28

Packaging box dimensions

(L / W / H) 1700mm / 1135mm / 1165mm

Box weight 568kg

Unit: mm

• Due to continuous innovation, research and product improvement, the specifi cations in this product information sheet are subject to change

without prior notice. The specifi cations may deviate slightly and are not guaranteed.

• The data do not refer to a single module and they are not part of the offer, they only serve for comparison to different module types



Send a message to us:

Remaining: 4000 characters

- Self introduction

- Required specifications

- Inquire about price/MOQ

Q:How to connect 2 power supplies together? (Solar panels)?
Most solar lamps use a single .2V nicd or nimh battery as a back-up supply, so they should be able to generate at least .5V in full sun to allow charging of the battery (you can verify the voltage of a single panel with your DMM) If you have two of these panels, I wouldn't expect them to make more than approximately 3V. The proper connection would be a series connection where the negative of one panel connects to the positive of the other and the remaining positive and negative wires become the outputs. Try this connection and measure again with your multimeter set to DCV and the panels in full sun. If the voltage is not high enough, add a third panel wired with its positive lead to the remaining negative of the first two. This should bring your voltage up another 50 percent.When you wire the panels positive to positive, negative to negative as you already have, voltage will be that of one panel, but current output will double (more amps) If you have many of these panels, you could combine series and parallel wiring to increase voltage and current.
Q:How many Solar Panels do I need?
Everyday I use ,280 kWh 280 kW-hour / 24 hours = 470 kW WOW, that is a very high power level, most homes use an average of .2 kW. My guess is that you mean you use 280 kW-hour in a year, which comes to an average power of .3 kW, typical. Assuming you get, worse case, 6 hours of sun per day, for the first case, 470 kW, each solar panel generates the equivalent of 250 x6/24 = 60 watts, so you would need 470k/60 = 8000 panels For the second case, .3 kw or 300 watts, divided by 60 that is about 20 panels. Depending on where you live, you could need as much as twice that number. Plus you need charge controller, lots of expensive batteries, and an inverter. The big problem is periods of no sun. If you demand continuous power, and you have a period of, say, 24 hours with no sun because of storms, etc, then the number of batteries increases to the hundreds.
Q:What SOLAR PANEL kit do I need?
I okorder.com
Q:Mitsubishi Solar Panels For Home Installation: How Much Do The Panels Cost?
Panels will cost in the range of 300-600 dollars for about 00 watts on average ( enough for one large lightbulb to run a few hours a day). The rest of the system needed will cost $2500-$4000. That is for the equipment. Cost for Installation?? Figure about 0 year life on equipment. It will probably never pay back investment, but will cut power usage. You can reduce power usage much more cost effectively buy simply conserving (Hot water temp. down, CFE bulbs, Better insulation, Better windows, Heat/Air a little colder/hotter, Attic ventilation, Geo Thermal heating/colling system). All of these measures will pay back sooner and save power usage. Solar will never pay back without major subsidies from the taxpayers. Particularly if in an area that has many cloudy days. Check it out. The calculations are basic and the facts are available if you really want them. Don't believe any salesmen or Environmentalists. They don't want you to know the facts.
Q:What minerals are used in making solar panels?
Not minerals. Elements. Silicon. Found everywhere. Group III elements for doping. Group V elements for doping.
Q:Solar Panel costs and sizes?
My okorder.com.
Q:Wiring in solar panels?
You okorder.com/ If you are planing to build an off grid system or a grid tie system, it should be wired by an electrician. At the lest by someone that knows what they are doing. If it is a grid tie system you will need the local building inspector to sign the paper work before the public utility will allow you to hook in. To get the inspector to sign off you have to get a permit which requires a lic. electrician.
Q:how many solar panels and what type to power a laptop computer that has to be plugged in when in use?
There okorder.com/ Why pay thousands of dollars for solar energy ($27,000 average cost) when you can build your own solar panel system for just a fraction of the retail cost. You can build a single solar panel or you can build an entire array of panels to power your whole house. Some people are saving 50% on their power bill, some people are reducing their bill to nothing. But what’s most impressive is that just by following these instructions some are even making the power company pay them!
Q:Does a 50W solar panel generate 540kWh?
running six hours a day doesn't mean much. You need to look at the solar insulation charts for your school's geographical location to come up with a better factor. The easiest number for you to use is sun hours. For example, Washington DC averages 4.23 hours. Do a Yahoo search for sun hours and you should find lots of charts. Solar panels rated at 50W give this output at full sun near noon at full brightness (no clouds). The sun hour factor makes it easy to find the equivalent number of full brightness hours. So, using Washington DC as an example you have: 000 panels * 50W * 4.23 sunhours/day = 634kWh a day on average. You state your school uses 88240kWh/month which is 6274kWh a day. This would mean you need ten times more solar panels since there is no way to get more daylight. Be careful to put in all the units in your formula and cancel them out to make sure you don't end up with a nonsense result. The title of the question would be answered as followed: 50W/000 * 4.23 sunhours/day = 0.63kWh/day or 9kWh per month or 228kWh a year. These are annual averages. If you wanted a specific month, you would need the sun hours for that month. Hope this helps.
Q:where to face solar panels?
Not compass south, but solar south. It's easy to find. Google Find Solar south and you can get directions. Even better are trackers, that will let your panels track the sun all day.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range