Plywood-formwork Systems for Formwork and Scaffolding

Ref Price:
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50 m²
Supply Capability:
1000 m²/month
  • OKorder Service Pledge
  • Quality Product
  • Order Online Tracking
  • Timely Delivery
  • OKorder Financial Service
  • Credit Rating
  • Credit Services
  • Credit Purchasing

Add to My Favorites

Follow us:

Plywood --- make perfect concrete surface


WISA-Form Birch is a coated special plywood using in the formwork systems where high

requirements are set on the concrete surface and the times of reuses.


With CNBM timber beam & WISA plywood, the formwork is low weight but high load capacity, it is

widely used in construction.


Characteristics:

◆ Component with high standardization.

◆ Assembling in site, flexible application.

◆ Light weight, easy transportation and storage.



Q:
To ensure the well-being of workers involved in working with steel formwork in confined spaces, it is crucial to adhere to specific safety guidelines. Consider the following commonly recommended safety measures: 1. Thoroughly assess risks: Prior to commencing work in a confined space, it is imperative to evaluate potential hazards and risks associated with the task at hand. This evaluation should encompass the identification of dangers such as inadequate ventilation, limited access, or the presence of hazardous gases. 2. Ensure sufficient ventilation: Confined spaces often lack proper air circulation, which can result in the accumulation of toxic gases or oxygen deficiency. Before entering, verify that the area is adequately ventilated, and continuously monitor air quality throughout the task. 3. Utilize suitable personal protective equipment (PPE): Workers must always wear the appropriate PPE, which includes safety helmets, goggles, gloves, and respiratory protection as required. The specific PPE necessities may vary depending on the nature of the confined space and associated hazards. 4. Implement adequate lighting: Insufficient lighting in confined spaces can hinder visibility and compromise safety. To mitigate accidents, provide sufficient lighting to ensure clear visibility. 5. Establish proper entry and exit procedures: Clearly define entry and exit procedures for workers entering and exiting confined spaces. This should involve the use of appropriate signage, secure barriers, and the assignment of a responsible individual to monitor and control access. 6. Ensure effective communication: Establish a reliable communication system between workers inside and outside the confined space. This can be achieved through the use of two-way radios, hand signals, or other means of communication to prevent isolation and enable prompt assistance if necessary. 7. Regularly inspect equipment and formwork: Prior to commencing work, inspect the steel formwork and associated equipment for any damage or defects. Promptly address any issues to prevent accidents or structural failures. 8. Provide comprehensive training: Workers involved in working with steel formwork in confined spaces should receive thorough training on safety procedures, hazard recognition, emergency response, and proper equipment usage. Regular training updates should also be conducted to ensure workers remain knowledgeable about safety practices. 9. Establish an emergency response plan: Despite taking necessary precautions, emergencies can still occur. Develop an emergency response plan that outlines evacuation, rescue, and medical assistance procedures. Ensure all workers are familiar with the plan and conduct regular drills to practice these protocols. 10. Regularly review and update safety procedures: Continuously review and update safety procedures to incorporate new regulations, industry best practices, or lessons learned from previous incidents. Continuous improvement and monitoring of safety measures are vital to maintaining a safe working environment. Remember, working in confined spaces with steel formwork carries significant risks. By following these common safety guidelines and fostering a safety-conscious culture, the risk of accidents and injuries can be minimized, ensuring a safer working environment for all.
Q:
To ensure a successful construction project, it is important to take into account several design considerations for steel formwork systems. First and foremost, the load-bearing capacity of the steel formwork system is crucial. It must be able to safely support the weight of the poured concrete as well as any additional loads like workers and equipment. Calculations and analysis are necessary to determine the appropriate thickness and reinforcement of the steel formwork. In addition, the formwork system should be designed to provide sufficient stability and resistance against lateral forces. This is especially important for tall or complex structures that may be subject to significant wind or seismic loads. The design should incorporate bracing and anchorage systems to ensure stability throughout construction. Another important consideration is the ease of assembly and disassembly of the steel formwork system. The design should facilitate efficient installation and removal, minimizing labor and time requirements. This can be achieved through the use of modular components and standardized connections that are easy to assemble and dismantle. Furthermore, the formwork system should be adaptable to any necessary adjustments or modifications. Construction projects often require changes during the process, and the formwork should be flexible enough to accommodate these changes without compromising its structural integrity. Safety is also a crucial aspect in the design of steel formwork systems. The formwork should provide a safe working environment for construction workers, incorporating features like handrails, access platforms, and non-slip surfaces. Additionally, potential hazards such as sharp edges or protruding elements should be considered, and appropriate safety measures should be incorporated to mitigate these risks. Lastly, the durability and longevity of the steel formwork system should be taken into consideration. It should be designed to withstand the harsh conditions of construction, including exposure to weather, chemicals, and repeated use. This may involve the use of corrosion-resistant materials or protective coatings to ensure the longevity and performance of the formwork system. In conclusion, there are several important design considerations for steel formwork systems, including load-bearing capacity, stability against lateral forces, ease of assembly and disassembly, adaptability to changes, safety features, and durability. By carefully considering these factors, engineers can design a steel formwork system that meets the specific requirements of a construction project and ensures its successful execution.
Q:
Yes, steel formwork can be used for both straight and sloping structures. Steel formwork is highly versatile and can be easily adjusted to accommodate various angles and curves, making it suitable for constructing both straight and sloping structures efficiently and effectively.
Q:
Steel formwork is a type of temporary structure that is used in construction projects to provide support and shape to concrete during the curing process. It consists of several components that work together to create a rigid and durable formwork system. The main components of steel formwork include: 1. Panels: These are the primary components of the formwork system and are usually made of steel or steel-reinforced plywood. They are available in different sizes and shapes and can be easily interconnected to create the desired formwork configuration. 2. Soldiers: These are vertical members that provide support to the formwork panels. They are typically made of steel and are adjustable in height, allowing for flexibility in formwork design. Soldiers are connected to the panels using connecting clamps or pins. 3. Waler Beams: These are horizontal members that help distribute the load evenly across the formwork system. Waler beams are connected to the soldiers using clamps or brackets and are usually made of steel or aluminum. 4. Tie Rods: These are used to hold the formwork panels and soldiers together. They are threaded rods that pass through the panels and are secured with nuts and washers on each side. Tie rods help in maintaining the required spacing between the panels and provide additional strength to the formwork system. 5. Formwork Accessories: These include various components such as clamps, brackets, wedges, and pins that are used to connect and secure the formwork components. They help in maintaining the stability and alignment of the formwork system during concrete pouring and curing. 6. Formwork Joints: These are specially designed connectors that allow for easy assembly and disassembly of the formwork system. They ensure proper alignment and tightness of the formwork components, preventing leakage of concrete and maintaining the desired shape. 7. Formwork Supports: These are used to provide additional support to the formwork system, especially for larger and complex structures. Formwork supports can be in the form of props, scaffolding, or specialized shoring systems, depending on the specific requirements of the project. Overall, these components work together to create a strong and stable formwork system that can withstand the pressure and weight of the concrete during the construction process. Steel formwork is preferred for its durability, reusability, and ease of assembly and disassembly, making it a popular choice in modern construction projects.
Q:
Yes, steel formwork can be used for projects with stringent quality requirements. Steel formwork offers high strength, durability, and dimensional accuracy, making it suitable for projects that demand precise and consistent results. Its ability to withstand heavy loads and extreme weather conditions ensures the quality and stability of the concrete structure. Additionally, steel formwork can be easily customized and reused, resulting in cost-effective and efficient construction processes for projects with strict quality standards.
Q:
Yes, steel formwork can be used for underground tunnels. Steel formwork is a versatile and durable material that is commonly used in construction projects, including underground tunnels. It is able to withstand the pressure and forces exerted by the surrounding soil and rock, making it suitable for use in the construction of tunnels. Additionally, steel formwork is easy to assemble and disassemble, allowing for efficient construction and maintenance of tunnels. Its strength and durability make it a popular choice for underground tunnel construction, providing a reliable and long-lasting solution.
Q:
Steel formwork panels are available in various sizes and dimensions to suit different construction needs. The most common sizes for steel formwork panels are 1.2 meters by 2.4 meters and 1.5 meters by 3 meters. These sizes are widely used in the construction industry due to their versatility and efficiency. The thickness of steel formwork panels can vary depending on the required load-bearing capacity and durability. Typically, steel formwork panels range from 12mm to 18mm in thickness. Thicker panels are often preferred for heavy-duty applications, while thinner panels are suitable for lighter loads. In addition to the standard sizes, custom sizes and dimensions can also be manufactured to meet specific project requirements. This flexibility allows contractors to tailor the formwork panels to their unique construction needs, ensuring optimal performance and efficiency on the job site. It is important to note that the sizes and dimensions of steel formwork panels may vary between manufacturers. Therefore, it is essential to consult with the supplier or manufacturer to determine the available sizes and dimensions for a specific product line. This will ensure that the chosen steel formwork panels are suitable for the intended application and meet the necessary structural requirements.
Q:
Various types of formwork spacers are commonly utilized in steel formwork. These spacers play a crucial role in maintaining the desired spacing between the formwork and reinforcement, thus ensuring the structural integrity of the concrete structure. Here, we present a range of formwork spacers frequently employed in steel formwork: 1. Plastic Spacers: Due to their lightweight nature, durability, and easy installation, plastic spacers are extensively employed in steel formwork. They are typically crafted from top-notch plastic materials and come in diverse shapes and sizes to accommodate different reinforcement requirements. 2. Steel Spacers: Steel spacers are another prevalent type of formwork spacer used in steel formwork applications. Constructed from high-strength steel, they possess the capacity to withstand heavier loads. Steel spacers prove ideal for heavy-duty applications that necessitate added strength and durability. 3. Rubber Spacers: In steel formwork, rubber spacers are employed to provide a cushioning effect and prevent direct contact between the reinforcement and the formwork. These spacers are suitable for scenarios where vibration or movement is anticipated, as they efficiently absorb shocks and minimize the risk of damage. 4. Concrete Spacers: Concrete spacers primarily find utility in precast concrete applications. Comprised of concrete, they act as support structures, ensuring the correct spacing between the formwork and reinforcement is maintained. Concrete spacers are not only durable and easy to install but also offer exceptional stability during the casting process. 5. Combination Spacers: Combination spacers are versatile in nature, incorporating various materials such as plastic and steel to provide enhanced strength and stability. These spacers are designed to meet specific project requirements and offer a cost-effective solution for various steel formwork applications. To guarantee optimal performance and safety, it is imperative to select the appropriate formwork spacer type based on the project's specific requirements, encompassing load capacity, spacing needs, and environmental conditions. Seeking guidance from a structural engineer or construction professional can ensure the correct selection and installation of formwork spacers.
Q:
Steel formwork offers several advantages that contribute to easier formwork removal. Firstly, its high strength and durability enable it to withstand the pressure and weight of the concrete without deforming or warping. As a result, the formwork remains undamaged and intact after the concrete is poured and cured. Secondly, the smooth surfaces of steel formwork facilitate the easy release of the cured concrete. The absence of sticking between the concrete and the formwork simplifies the removal process, especially when dealing with complex shapes and intricate designs. Consequently, the formwork can be removed effortlessly without causing any harm to the concrete. Moreover, steel formwork often incorporates detachable parts or panels, allowing for convenient assembly and disassembly. This feature not only speeds up the removal process but also simplifies the cleaning and maintenance of the formwork. Consequently, the formwork remains in good condition, ensuring its longevity and reusability. Additionally, steel formwork exhibits remarkable resistance to moisture and chemicals commonly encountered in the construction environment. This resistance prevents the formwork from deteriorating or weakening over time. Consequently, the formwork remains intact and in excellent condition, making it easier to remove after the concrete has set. In summary, the strength, durability, smooth surfaces, detachable parts, and resistance to moisture and chemicals make steel formwork an ideal choice for easier formwork removal. This not only simplifies the process but also guarantees the quality and integrity of the concrete structure being constructed.
Q:
When designing steel formwork for slabs that have openings, it is crucial to take several important factors into consideration. These factors include: 1. Load-bearing capacity: The formwork needs to be able to support the weight of the concrete and any additional loads that may be applied during construction or usage. It should be designed to withstand these loads without experiencing excessive deflection or failure. 2. Durability: Steel formwork should be able to withstand the harsh conditions found on construction sites, including exposure to moisture, chemicals, and physical impact. The chosen material should be resistant to corrosion and have a high strength-to-weight ratio. 3. Flexibility and adjustability: Since slabs with openings often have irregular shapes and sizes, the formwork should be designed to be flexible and adjustable. This allows for easy customization and ensures a precise fit for the openings. 4. Support for reinforcement: The formwork should provide adequate support for the reinforcement bars or mesh used within the slab. It should be designed to accommodate the placement and spacing of these reinforcements, ensuring proper concrete cover and structural integrity. 5. Ease of assembly and disassembly: The formwork system should be designed for easy assembly and disassembly, as it will be used repeatedly for multiple slabs with openings. The components should be lightweight and easy to maneuver, allowing for efficient construction and reduced labor costs. 6. Safety: Safety is a top priority when designing steel formwork. The formwork should be designed to prevent accidents, such as slipping or collapsing, during assembly, concrete pouring, and removal. Adequate safety measures, such as guardrails and non-slip surfaces, should be incorporated into the design. 7. Cost-effectiveness: The design should aim to minimize material and labor costs while still ensuring the required strength and durability. Efficient use of materials and standardization of components can help reduce overall costs. 8. Compatibility with other construction systems: The formwork should be compatible with other construction systems, such as scaffolding or shoring, to ensure proper integration and coordination during the construction process. By considering these factors, designers can create steel formwork systems that are safe, durable, cost-effective, and efficient for slabs with openings.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request