• On Grid Solar Inverter GS4200-DS System 1
  • On Grid Solar Inverter GS4200-DS System 2
  • On Grid Solar Inverter GS4200-DS System 3
On Grid Solar Inverter GS4200-DS

On Grid Solar Inverter GS4200-DS

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10 unit
Supply Capability:
100 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

GW4200-DS

 

GW4200-DS photovoltaic inverter is suitable for home rooftop photovoltaic system, designed under modern industrial concept. There are three colors for option with fashionable appearance. This model uses advanced digital control technology and communication method as well as super MPP tracking and security technology. It has a wide range of input and output voltage. To ensure its stability and long service life, our inverter is manufactured with optimum quality components. It holds a safe lead among the same level of products.

DC Input DataMax.PV-generator power[W]4600
Max.DC power each MPPT[W]2500
Max.DC voltage[V]580
MPPT voltage range[V]125~550
Turn on DC voltage[V]125

Max.DC work current[A]

2*15
Number of inputs/MPP trackers4/2(can parrallel)
DC connectorMC IV connector
Self-energy consumption[W]<5< td="">
AC Output DataNominal AC power[W]4200
Max.AC power[W]4400
Max.output current[A]21
Nominal output voltage rangeAccording to VDE-AR-N 4105, RD1663, ENEL, G59,SAA
AC grid frequencyAccording to VDE-AR-N 4105, RD1663, ENEL, G59,SAA
THDi〈2%
Power factor0.95 leading...0.95 lagging
AC connectionSingle phase
EfficiencyMax.efficiency97.8%
European efficiency97.4%
MPPT adaptation efficiency>99.5%
Safty EquipmentLeakage current monitoring unitIntegrated
DC switch disconnectorOptional
Islanding protectionAFD
Grid monitoring

According to VDE-AR-N 4105,AS4777.1/2/3, RD1663,

ENEL,G59-2

Normative ReferenceEMC complianceEN 61000-6-1,EN 61000-6-2, EN 61000-6-3,EN 61000-6-4
Safety complianceAccording to IEC 62109-1,AS3100
General DataDimensions(W*H*D) [mm]390*417*165
Net weight [kg]20
HousingFor outdoor and indoor
Mounting informationWall mounting
Operating temperature range-20~60℃(up 45℃ derating)
Relative humidity0 ~ 95%
Site altitude[m]2000
IP proection classIP65
TopologyTransformerless
CoolingNature Convection
Noise level[dB]〈25
Display4" LCD
CommunicationUSB2.0;RS485(Wireless/Bluetooth optional)
Standard warranty[years]5/10(optional)

 

Q:How does a solar inverter handle power export limitations imposed by the grid?
A solar inverter handles power export limitations imposed by the grid through a process called power factor control. The inverter continuously monitors the grid's voltage and frequency, adjusting its power output accordingly. If the grid imposes limitations on power export, the inverter reduces its output to stay within the allowed limits. This ensures that the solar system operates in compliance with the grid regulations and prevents any excess power from flowing back into the grid.
Q:What is the role of a solar inverter in preventing islanding?
The role of a solar inverter in preventing islanding is to constantly monitor the electrical grid and immediately disconnect from it if it detects a fault or disruption. By disconnecting from the grid, the solar inverter ensures that it does not continue to generate power and create a self-sustaining island of electricity, which could pose a safety risk for utility workers attempting to fix the fault.
Q:Can a solar inverter be used with building-integrated photovoltaic systems?
Yes, a solar inverter can be used with building-integrated photovoltaic (BIPV) systems. Solar inverters are an essential component of any photovoltaic system, including BIPV systems. They are responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power electrical devices in buildings. Therefore, a solar inverter is necessary to ensure the seamless integration of BIPV systems with the electrical grid and the effective utilization of solar energy.
Q:Can a solar inverter be used with bifacial solar panels?
Yes, a solar inverter can be used with bifacial solar panels. Bifacial solar panels have the ability to generate electricity from both sides, capturing sunlight from the front and reflecting light from the rear. A solar inverter is responsible for converting the generated DC (direct current) electricity from the panels into AC (alternating current) electricity for use in homes or businesses. Therefore, a solar inverter is essential for connecting and utilizing the electricity generated by bifacial solar panels.
Q:What is the role of a solar inverter in reactive power compensation?
The role of a solar inverter in reactive power compensation is to monitor and regulate the reactive power flow in the electrical system. It helps maintain a power factor closer to unity by injecting or absorbing reactive power as needed. This is crucial for improving the overall efficiency and stability of the grid, as well as reducing voltage fluctuations and line losses.
Q:What are the key factors affecting the installation process of a solar inverter?
The key factors affecting the installation process of a solar inverter include the site location and orientation, electrical wiring and connections, proper grounding, adequate ventilation and cooling, and compliance with local regulations and safety standards. Additionally, the choice of mounting structure, the proximity to the solar panels, and the availability of a reliable power supply are also important factors to consider during the installation process.
Q:Can a solar inverter be used with a solar-powered swimming pool heater?
Yes, a solar inverter can be used with a solar-powered swimming pool heater. The solar inverter is responsible for converting the DC (direct current) electricity produced by the solar panels into AC (alternating current) electricity that can be used to power the swimming pool heater.
Q:Can a solar inverter be used in a commercial or industrial setting?
Yes, a solar inverter can indeed be used in a commercial or industrial setting. In fact, solar inverters are commonly used in these settings to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various electrical loads in the facility. This helps businesses and industries reduce their reliance on traditional energy sources and save on electricity costs while promoting sustainability.
Q:What are the key factors affecting the lifespan of a solar inverter?
The key factors affecting the lifespan of a solar inverter are the quality of components used, the level of maintenance and care, the operating environment, and the overall design and build quality of the inverter.
Q:How do you choose the right size solar inverter for a specific solar power system?
Choosing the right size solar inverter for a specific solar power system requires careful consideration of various factors. Here are some steps to help you make the right choice: 1. Determine your solar power system's capacity: Start by calculating the total capacity of your solar power system. This involves determining the total wattage of all your solar panels combined. This information can usually be found on the product specifications or by consulting with your solar panel manufacturer. 2. Consider your average energy consumption: Assess your average energy consumption to determine the size of the solar inverter needed to meet your requirements. Consider your peak power usage and any potential future increase in energy demands. 3. Evaluate the inverter's capacity: Match the capacity of the solar inverter with your solar power system's capacity. The inverter's capacity should be equal to or slightly higher than your system's total capacity to ensure optimal performance. 4. Consider the inverter's efficiency: Look for an inverter with high efficiency ratings. A higher efficiency rating means that it can convert a larger percentage of the solar energy into usable electricity, minimizing power losses. 5. Determine the inverter type: Decide on the type of solar inverter suitable for your system. There are three main types: string inverters, microinverters, and power optimizers. String inverters are the most common and cost-effective option for small to medium-sized systems, while microinverters and power optimizers are better suited for complex installations or systems with shading issues. 6. Assess the inverter's features: Consider additional features that the solar inverter may offer. Look for features such as monitoring capabilities, grid integration capabilities, and built-in safety features like arc fault protection or rapid shutdown. 7. Consult with professionals: If you are uncertain about the right size solar inverter for your specific solar power system, it is advisable to consult with a professional solar installer or an electrical engineer. They can help assess your energy needs, system requirements, and provide expert guidance on selecting the appropriate inverter size. Remember, choosing the right size solar inverter is crucial for the overall performance and efficiency of your solar power system. Taking the time to evaluate your system's requirements and seeking expert advice will help ensure you make an informed decision.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords