• ON-GRID INVERTER Sunteams 1500/2000/2500/3000 System 1
ON-GRID INVERTER Sunteams 1500/2000/2500/3000

ON-GRID INVERTER Sunteams 1500/2000/2500/3000

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing
The Sunteams 1500 ~5000 series is applicable to various rooftops and small scale photovoltaic grid-connected power plants. Their nominal output powers are 1.5 kW, 2 kW, 2.5 kW,
3 kW, 3.6 kW, 4 kW and 5kW respectively.

This series is transformerless and has a wide range of MPPT input voltage. Its maximum conversion efficiency and MPPT tracking accuracy reach 97.6 % and 99.5 % respectively.  The maximum DC voltage reaches 550 V. Its multilingual LCD display facilitates easy operation. It has waterproof direct plug-in terminals. It has overvoltage, islanding, short-circuit, overloading and overheating protection functions. Its IP65 protection degree will ensure it runs well in various tough environments.

Efficient                                        
The maximum efficiency of the inverter can reach 96.5 % - 97.6 %
Transformerless design
Flexible
For indoor and outdoor installation
Maintenance free
Simple
‘Plug and play’connection for easy installation
Designed for hanging with simple and easy installation
Communicative
RS232 / RS485 interfaces as standard
Optional Bluetooth technology

Q:How does a solar inverter communicate with other devices?
A solar inverter communicates with other devices through various communication protocols such as Wi-Fi, Bluetooth, Ethernet, or RS485. These protocols allow the inverter to connect and exchange information with devices such as monitoring systems, smart meters, or home automation systems. This communication enables real-time monitoring, data logging, and control of the solar energy system.
Q:What is the role of a solar inverter in a microgrid system?
The role of a solar inverter in a microgrid system is to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power the electrical loads in the microgrid. It also helps to manage the flow of electricity between the solar panels, battery storage, and the grid, ensuring efficient utilization and stability of the microgrid system.
Q:Can a solar inverter be used in areas with high levels of electromagnetic interference (EMI)?
Yes, a solar inverter can be used in areas with high levels of electromagnetic interference (EMI) as long as it is properly shielded and designed to withstand such conditions. However, it is important to choose an inverter that meets the necessary EMI compliance standards to ensure reliable and efficient operation in these environments.
Q:How does a solar inverter affect the overall system cost?
A solar inverter can have a significant impact on the overall system cost. While it is a crucial component that converts DC power generated by solar panels into AC power for use in homes or businesses, it also adds to the total expenses of installing a solar system. The cost of a solar inverter depends on factors such as its capacity, efficiency, and features. Higher capacity or more advanced inverters tend to be more expensive. However, investing in a high-quality inverter can improve the overall efficiency and performance of the solar system, potentially offsetting the additional cost in the long run.
Q:How does a solar inverter handle fluctuations in solar panel output due to temperature changes?
A solar inverter handles fluctuations in solar panel output due to temperature changes by employing a maximum power point tracking (MPPT) algorithm. This algorithm continuously adjusts the operating voltage and current of the inverter to ensure that it operates at the maximum power point of the solar panels, despite the temperature changes. By dynamically adapting to the varying output of the panels, the inverter optimizes the energy conversion process and allows for efficient utilization of the available solar energy.
Q:What is the role of a solar inverter in optimizing energy production?
The role of a solar inverter in optimizing energy production is to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power homes or be fed into the electrical grid. Additionally, solar inverters also help in ensuring that the solar system operates at its maximum efficiency by tracking the maximum power point (MPP) and adjusting the voltage and current accordingly. This optimization helps to maximize the energy production from the solar panels and ensures that the system is operating at its peak performance.
Q:What is the role of MPPT (Maximum Power Point Tracking) in a solar inverter?
The role of MPPT (Maximum Power Point Tracking) in a solar inverter is to optimize the efficiency of the solar panel system by continuously adjusting the voltage and current to ensure that the panel operates at its maximum power point. This helps to extract the maximum available power from the solar panels under varying environmental conditions, such as changes in sunlight intensity or temperature. By dynamically tracking the optimal operating point, MPPT maximizes the energy output of the solar panels and improves the overall performance of the solar inverter system.
Q:What is the maximum operating temperature of a solar inverter?
The maximum operating temperature of a solar inverter typically ranges between 40 to 50 degrees Celsius, depending on the specific model and manufacturer.
Q:What is the role of a solar inverter in a solar-powered water purification system?
The role of a solar inverter in a solar-powered water purification system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which is then used to power the water purification system. The solar inverter ensures that the electricity produced by the solar panels is compatible with the electrical requirements of the water purification system, allowing it to function efficiently.
Q:How does a solar inverter handle electromagnetic interference?
A solar inverter handles electromagnetic interference (EMI) by incorporating various measures to reduce and mitigate its impact. These measures include using shielding materials, implementing proper grounding techniques, and utilizing filters to suppress EMI. Additionally, advanced inverters may employ digital signal processing techniques to minimize the effects of EMI on the solar power system.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords