• Low Ash Carbon Electrode Paste  Block Good Delivery Time System 1
  • Low Ash Carbon Electrode Paste  Block Good Delivery Time System 2
  • Low Ash Carbon Electrode Paste  Block Good Delivery Time System 3
Low Ash Carbon Electrode Paste  Block Good Delivery Time

Low Ash Carbon Electrode Paste Block Good Delivery Time

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
0 m.t.
Supply Capability:
30000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing


Spcifications

1:carbon eletrode paste
2:for ferroalloy,calcium carbide manufacture
3:HS 3801300000,YB/T5212-1996,ISO9001:2008

Product Description

Carbon Electrode Paste is a self-baking electrode used in submerged arc furnaces for delivering power to the charge mix. Electrode Paste is added to the top of the electrode column in either cylindrical or briquette form. As the paste moves down the electrode column the temperature increase causes the paste to melt and subsequently bake forming a block of electrically conductive carbon. Electrode Paste is essentially a mix of Electrically Calcined Anthracite (ECA) or Calcined Petroleum Coke (CPC) with Coal Tar Pitch.


Graphite/Carbon Electrode Paste

Specification/Item

Ash

4.0%max

5.0%max

6.0%max

7.0% Max

9.0% Max

11.0% Max

VM

12.0%-15.5%

12.0%-15.5%

12.0%-15.5%

9.5.0%-13.5%

11.5%-15.5%

11.5%-15.5%

Compress Strength

18.0Mpa Min

17.0Mpa Min

15.7Mpa Min

19.6Mpa Min

19.6Mpa Min

19.6Mpa Min

Specific Resistance

65μΩm Max

68μΩm Max

75μΩm Max

80μΩm Max

90μΩm Max

90μΩm Max

Bulk Density

1.38G/CM3 Min

1.38G/CM3 Min

1.38G/CM3 Min

1.38G/CM3 Min

1.38G/CM3 Min

1.38G/CM3 Min



Spcifications

1:carbon eletrode paste 
2:for ferroalloy,calcium carbide manufacture 
3:HS 3801300000,YB/T5212-1996,ISO9001:2008

Pictures

Low Ash Carbon Electrode Paste  Block Good Delivery Time

Q:What is carbon nanophotonics?
The study and manipulation of light at the nanoscale using carbon-based materials is known as carbon nanophotonics. This branch of science and technology integrates carbon nanotubes, graphene, and diamond nanoparticles with photonics to develop new optical devices and systems. Carbon-based nanomaterials possess exceptional electrical conductivity, high mechanical strength, and excellent optical properties, making them ideal for nanophotonics applications. These materials can confine and manipulate light at the nanoscale, enabling the miniaturization of optical components and enhancing light-matter interactions. Carbon nanophotonics has vast potential across various fields. Telecommunications, for instance, can benefit from high-speed and compact photonic devices developed using carbon nanomaterials for efficient data transmission. In the field of sensing, highly sensitive and selective sensors can be developed using carbon nanophotonics to detect different molecules and substances. Furthermore, carbon nanomaterials can enhance the efficiency of solar cells and other photovoltaic devices, contributing to advancements in energy harvesting. In summary, carbon nanophotonics is a rapidly evolving field that combines carbon-based nanomaterials with photonics to create innovative optical technologies. By harnessing the power of light at the nanoscale, this field has the potential to revolutionize industries and drive advancements in science and technology.
Q:A carbon Roast Lamb Leg stores need to how much money
You can go to see the Roast Lamb Leg hunting flavor, taste and scale are good, no technology can also go to learn.
Q:What is the role of carbon in respiration?
The role of carbon in respiration cannot be overstated, as it serves as a vital element in organic molecules like glucose. When respiration takes place, glucose undergoes a breakdown with the presence of oxygen, resulting in the production of ATP energy. The carbon atoms found in glucose are oxidized, thereby releasing electrons that eventually transfer to oxygen and form carbon dioxide (CO2) as a byproduct. This entire process, which is referred to as cellular respiration, is universal among all living organisms and is indispensable for generating the energy necessary for various cellular activities. The absence of carbon would render respiration impossible and prevent the generation of energy essential for growth, movement, and other vital life functions. Additionally, the carbon dioxide generated during respiration is released into the atmosphere and plays a critical role in the carbon cycle, which contributes to the regulation of Earth's climate and supports plant growth through photosynthesis.
Q:What are the different allotropes of carbon?
There are several different allotropes of carbon, each with its own unique physical and chemical properties. The most well-known allotrope of carbon is diamond, which is known for its hardness and brilliance. Diamond is made up of a three-dimensional arrangement of carbon atoms, each bonded to four neighboring carbon atoms in a tetrahedral structure. Another allotrope of carbon is graphite, which is known for its softness and ability to conduct electricity. In graphite, carbon atoms are arranged in layers that are held together by weak forces, allowing the layers to slide over each other easily. This layered structure gives graphite its lubricating properties. Fullerenes are another class of carbon allotropes, which are made up of carbon atoms arranged in closed cage-like structures. The most well-known fullerene is buckminsterfullerene (C60), which consists of 60 carbon atoms bonded together to form a hollow sphere resembling a soccer ball. Fullerenes have unique properties such as high tensile strength and the ability to act as superconductors. Carbon nanotubes are another allotrope of carbon, which are cylindrical structures made up of rolled-up graphene sheets. Carbon nanotubes can have different structures and properties depending on the arrangement of carbon atoms. They are known for their exceptional strength, electrical conductivity, and thermal conductivity. Amorphous carbon is another carbon allotrope, which does not have a definite crystal structure. It is often found in substances like soot, coal, and charcoal. Amorphous carbon can have a wide range of properties depending on its structure, ranging from soft and powdery to hard and brittle. These are just a few examples of the different allotropes of carbon. The ability of carbon to form various allotropes with vastly different properties contributes to its importance in a wide range of applications, including jewelry, electronics, and material science.
Q:What do you mean by carbon fiber for 1K, 3K, 6K and 12K?
This is the specification of carbon fiber, refers to the number of filaments in carbon fiber tow, 1K=1000 (root), 3K=3000 (root), 6K=6000 (root), 12K=12000 (root). At the same time, 1K, 3K, 6K, and 12K are also called small tow.The relationship between the properties of carbon fibers and the number of filaments is described below:According to the number of carbon fiber bundle of carbon fiber filaments can be divided into small tow and tow two. Compared with small tow, the disadvantage of large tow is that when the structure of the plate is made, the tow should not spread out, resulting in the increase of the monolayer thickness, which is not conducive to the structural design. In addition, large tow carbon fiber adhesion, wire breaking phenomenon more, which makes the strength and stiffness of the affected, a decrease in performance, the performance of dispersion will be larger. Aircraft, spacecraft generally only a small tow carbon fiber, so the small tow carbon fiber is also known as the "space" of carbon fiber, large tow carbon fiber is known as the "industrial grade carbon fiber.But large tow production costs than small tow low, and with the progress of the production technology, people familiar with the structure of the carbon fiber material, large tow carbon fiber more and more stringent requirements for reliability field. In this way, between the small and large tow tow distinguish changes, such as earlier in the number of single tow 12000 (12K) as the dividing line, but the number of carbon fiber 1K~24K is divided into small bundles, rather than 48K designated as large tow. While the Airbus Company has begun to use 24K carbon fibers in the manufacture of A380 super large aircraft, it is estimated that as the technology advances, the line between the small tow and the big tow will push up.
Q:What are the impacts of carbon emissions on the stability of permafrost?
Carbon emissions have a significant impact on the stability of permafrost. Permafrost refers to the layer of soil, sediment, and rock that remains frozen for at least two consecutive years. It covers vast areas in the Arctic, subarctic regions, and high-altitude mountain ranges. One of the main impacts of carbon emissions on permafrost stability is the acceleration of climate change. Carbon dioxide (CO2) and other greenhouse gases trap heat in the atmosphere, leading to global warming. As temperatures rise, permafrost starts to thaw, causing a range of negative consequences. Thawing permafrost releases large amounts of stored carbon into the atmosphere. This carbon was previously locked in the frozen organic matter, such as dead plants and animals, which accumulated over thousands of years. As permafrost thaws, microbes decompose this organic matter and release greenhouse gases like carbon dioxide and methane. These emissions create a positive feedback loop, further exacerbating climate change and leading to more permafrost thawing. The release of carbon from thawing permafrost contributes to the overall increase in atmospheric greenhouse gas concentrations. This, in turn, amplifies global warming and global climate change. The impacts are not limited to the Arctic; they affect the entire planet. Rising temperatures, sea-level rise, extreme weather events, and disruptions to ecosystems are some of the consequences of global climate change. Permafrost thaw also affects infrastructure and human settlements in the Arctic and subarctic regions. Buildings, roads, pipelines, and other infrastructure built on permafrost can be destabilized as the ground beneath them softens. This can lead to structural damage and economic losses. Additionally, communities that rely on permafrost for traditional activities such as hunting, fishing, and transportation face challenges as the landscape changes. The impacts of carbon emissions on permafrost stability are not only local but also global. The release of stored carbon from permafrost contributes to climate change, which has far-reaching consequences for ecosystems, economies, and societies worldwide. It is crucial to reduce carbon emissions and mitigate climate change to preserve permafrost and its vital role in the Earth's climate system.
Q:How many electrons does carbon have?
Carbon has 6 electrons.
Q:What is the greenhouse effect of carbon dioxide?
The greenhouse effect of carbon dioxide refers to the process by which carbon dioxide (CO2) and other greenhouse gases in the Earth's atmosphere trap heat from the sun and contribute to the warming of the planet. These gases act like a blanket, allowing sunlight to pass through but trapping the heat that is reflected back from the Earth's surface. When sunlight reaches the Earth's surface, it warms the land, oceans, and atmosphere. As the Earth re-radiates this heat back into space, greenhouse gases absorb and re-emit some of this energy, preventing it from escaping into space. This process naturally occurs and is essential for maintaining the Earth's temperature within a habitable range, making life as we know it possible. However, human activities, particularly the burning of fossil fuels such as coal, oil, and natural gas, have significantly increased the concentration of carbon dioxide and other greenhouse gases in the atmosphere. This has intensified the greenhouse effect, leading to a rise in global temperatures, commonly referred to as global warming or climate change. The increased levels of carbon dioxide in the atmosphere result in more heat being trapped, creating a greenhouse effect that amplifies the natural warming process. The consequences of this include rising sea levels, more frequent and severe extreme weather events, changes in precipitation patterns, and disruptions to ecosystems and biodiversity. Addressing the greenhouse effect of carbon dioxide and reducing greenhouse gas emissions is crucial in mitigating the impacts of climate change. Efforts to transition to renewable energy sources, increase energy efficiency, and promote sustainable practices are key in reducing carbon dioxide emissions and combating global warming.
Q:What is carbon offsetting in the food industry?
Carbon offsetting in the food industry refers to the practice of reducing or compensating for the greenhouse gas emissions produced throughout the food supply chain, from production to consumption. This is typically done by investing in projects that reduce emissions elsewhere, such as renewable energy projects or reforestation initiatives, to balance out the carbon footprint associated with food production and consumption.
Q:Often see a lot of cars made of carbon fiber body, is this material flammable?
Carbon fiber has the characteristics of light quality, high strength and not easy to burn. More and more widely used

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords