Level A High Quality Mono Solar Cell 156mm with TUV,CE Certification

Ref Price:
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
4000 watt
Supply Capability:
1000 watt/month
  • OKorder Service Pledge
  • Quality Product
  • Order Online Tracking
  • Timely Delivery
  • OKorder Financial Service
  • Credit Rating
  • Credit Services
  • Credit Purchasing

Add to My Favorites

Follow us:

Details Of Mono Solar Cell 156mm

 

Specifications Of Mono Solar Cell 156mm

 

1.Mechanical data and design

Format

156 mm × 156 mm ± 0.5 mm

Thickness

- 210 μm ± 40 μm

Front(-)

 1.5 mm bus bars (silver),blue anti-reflection coating (silicon nitride)

Back (+)

 2.5 mm wide soldering pads (silver) back surface field (aluminium)

 

 

2.Temperature Coefficient of Cells

 

Voc. Temp .  coef.%/K

-0.35%/K

Isc . Temp .  coef.%/K

+0.024%/K

Pm. Temp.  coef.%/K

 -0.47%/K

 

3.Electrical Characteristic

 

Efficiency (%)

Pmpp (W)

Umpp (V)

Impp (A)

Uoc (V)

Isc (A)

FF (%)

18.35

4.384

0.526

8.333

0.63 

8.877

78.3%

18.20

4.349

0.526

8.263

0.63

8.789

78.54%

18.05

4.313

0.525

8.216

0.63 

8.741

78.32%

17.90

4.277

0.524

8.161

0.629 

8.713

78.04%

17.75

4.241

0.523

8.116

0.629

8.678

77.70%

17.60

4.206

0.521

8.073

0.628

8.657

77.36%

17.45

4.170

0.519

8.039

0.628

8.633

76.92%

17.30

4.134

0.517

8.004

0.626

8.622

76.59%

17.15

4.098

0.516

7.938

0.625

8.537

76.80%

17.00

4.062

0.512

7.933

0.625

8.531

76.18%

16.75

4.002

0.511

7.828

0.625

8.499

75.34%

16.50

3.943

 0.510

7.828

0.625

8.484

74.36%

 

4.Intensity Dependence

Intensity [W/m2]

Isc× [mA]

Voc× [mV]

1000

1.00

1.000

900

0.90

0.989

500

0.50

0.963

300

0.30

0.939

200

0.20

0.920

 

 

 

 

 

 

 

Advantage Of Mono Solar Cell 156mm

 

1: high quality cell, Level A cell

2: Dimensione:125*125mm Diagonal:150mm / 165mm
    Dimensione:156*156mm Diagonal:200mm

3: Qualified certification: TUV,CE certification.

 

4: Warranty: five years for whole unit

 

 

 

Usage/Application Of Mono Solar Cell 156mm

 

 

Monocrystalline solar cells are currently the fastest developing a solar cell, its structure and production process has been finalized, the products have been widely used for space and ground. Such solar cells with high purity silicon rods as raw materials. Silicon rods, material performance indicators in order to reduce production costs, and now solar terrestrial applications such as the use of solar grade somewhat relaxed. Some semiconductor devices can also be used for processing materials and discard the head and tail of silicon materials, solar cells after re-drawn into a dedicated silicon rods.

 

 

Packaging & Delivery Of Mono Solar Cell 156mm

Packaging Detai

Packaging DetailExport Carton and Pallet or under customer request.

Delivery Detail10-20days

 

 Mono Solar Cell 156mm

 

 Mono Solar Cell 156mm

 

New Discovery of Solar Energy Material and Solar Cells

Nature prefers crystals. Salt, snowflakes, and quartz crystals are three typical examples, which is characterized by atoms and molecules are arranged in a unique lattice.

Industry also loves crystals. Electronic components is a crystal family, also  known as semiconductors, the most famous is the silicon material.
In order to make semiconductor practical engineer must adjust its crystalline arrangement to control the start and stop the flow of electrons. Semiconducto r engineers need to know precisely the lattice energy of electrons required to  move this energy value is called the energy gap. Similar to silicon, gallium arsenide and germanium and other semiconductor materials, they each have a unique energy gap of the crystal lattice. Through the determination of the energy gap, can determine what kind of material is suitable for electronic functions.

An interdisciplinary research team at Stanford University has successfully produced a semiconductor crystal with a variable energy gap. Such a semiconductor may be used as a solar cell, which is very sensitive to certain spectrum, from the sun to absorb more energy.
This raw material itself is not something new. Molybdenum disulfide (MoS2) is a crystalline rock, such as quartz, as a catalyst can be used to refine and lubricants.
Molybdenum disulfide is a single-layer structure: a triangular lattice of molybdenum atoms joins two sulfur. The nature of the rock is made up of many such single layer of material laminated together. Each has a single layer of molybdenum disulfide semiconductor potential applications.
Use of such a semiconductor material, we can get a great energy gap. This will have a beneficial aspect of the sensor, solar and other electronic applications.
Scientists have graphene endless praise. It found that graphene materials won the Nobel Prize, which is a single-layer structure consisting of a single layer of carbon atoms flat pendulum.
In 2012, the nuclear industry and MIT materials scientist devised a theory relates to semiconductor applications molybdenum disulfide monolayer. For any semiconductor, engineers must change its lattice arrangement so as to control the flow of electrons. For silicon, this adjustment comprises mixing a small amount of chemical substances in the crystal lattice.
Its scalability in the process is the most exciting thing. At the same time, from an industrial point of view, molybdenum disulfide very cheap.

Q:
Solar cells are used in calculators to convert sunlight into electrical energy. This energy is then used to power the calculator, eliminating the need for batteries or other external power sources.
Q:
Solar cells perform more efficiently in high altitude regions due to several factors. Firstly, high altitudes often have less air pollution, which means there are fewer particles in the air that can block or scatter sunlight. This allows solar cells to receive more direct sunlight, resulting in increased energy production. Additionally, solar cells operate more efficiently at lower temperatures, and high altitudes generally have cooler temperatures compared to lower elevations. Cooler temperatures help to reduce heat-related losses and improve the overall performance of solar cells. Therefore, solar cells in high altitude regions tend to generate more electricity and have higher conversion rates.
Q:
The impact of hurricane-force winds on solar cell efficiency can be significant. These strong winds can cause physical damage to solar panels, such as breaking or dislodging them from their mounts. This not only affects the overall functionality of the solar system but can also lead to a decrease in energy generation. Additionally, high winds can result in the accumulation of dust, dirt, or debris on the surface of the solar panels, reducing their ability to absorb sunlight and convert it into electricity. Therefore, it is crucial to ensure proper installation and maintenance of solar systems in hurricane-prone areas to minimize the negative impact on efficiency.
Q:
The role of solar cells in powering off-grid cabins is to harness energy from the sun and convert it into electricity. These cells, also known as photovoltaic cells, absorb sunlight and generate a direct current (DC), which is then converted into alternating current (AC) through an inverter. This AC power is used to operate appliances, lighting, and other electrical devices in off-grid cabins, providing a sustainable and renewable source of energy without the need for a traditional power grid connection.
Q:
Yes, solar cells can be used in sports arenas. They can be installed on the rooftops or on surrounding areas of the arena to harness solar energy and generate electricity. This renewable energy source can help offset the energy consumption of the arena, making it more sustainable and reducing its carbon footprint. Additionally, solar cells can also provide shade and protection from weather elements, enhancing the overall experience for spectators.
Q:
Yes, solar cells can definitely be used in theme parks or amusement parks. Solar cells can be installed on rooftops, parking lots, and other open spaces within these parks to generate clean and renewable energy. This energy can be utilized to power rides, lighting systems, water features, and other facilities within the park, reducing reliance on traditional power sources and lowering carbon emissions. Moreover, solar panels can also serve as educational tools, allowing park visitors to learn about renewable energy and sustainability.
Q:
Solar cells can still perform efficiently in areas with frequent tornadoes as they are designed to withstand extreme weather conditions. However, the installation and mounting of solar panels in tornado-prone regions should be done with utmost care and consideration of local building codes to ensure their resilience against high winds. Additionally, regular maintenance and inspection of the solar panels may be required to address any potential damage caused by tornadoes.
Q:
Yes, solar cells can definitely be used to power RVs and campers. In fact, many RVs and campers are now equipped with solar panels to generate electricity for various appliances and systems onboard. Solar power provides a sustainable and environmentally-friendly option for off-grid living, allowing RV and camper owners to have a constant source of clean energy while being able to travel and explore remote locations without relying solely on traditional power sources.
Q:
Yes, solar cells can be used for powering remote sensing devices. Solar cells convert sunlight directly into electricity, making them an ideal renewable energy source for remote areas or devices that require continuous power supply. Solar-powered remote sensing devices are commonly used in environmental monitoring, agriculture, and wildlife research, among other applications.
Q:
The lifespan of solar cells typically varies between 25 to 30 years, although some high-quality panels can last up to 40 years with proper maintenance and care.
It is the high-tech enterprise especially engaged in R&D, production, sales and service for solar cells. The company has a strict quality system, including incoming QC, in process QC, outgoing QC, quality engineering, system management and document control center. Our company complies with SPC, 6S and 6σ to fulfill quality system.

1. Manufacturer Overview

Location SanShui City, Guang Dong, China.
Year Established 2009
Annual Output Value Above 10 billion RMB
Main Markets

Mid East;Western Europe;North America;Southeast Asia
Company Certifications TUV ISO9001;SGS

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Zhuhai, Foshan
Export Percentage 0.4
No.of Employees in Trade Department about 600
Language Spoken: English;Chinese;
b)Factory Information  
Factory Size: 66666.7m2
No. of Production Lines 12
Contract Manufacturing OEM Service Offered;Design Service Offered
Product Price Range USD 0.3-0.45/Wp

Send your message to us

This is not what you are looking for? Post Buying Request