Iron bar from China steel mill 6-50 mm for building

Ref Price:
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
19863 m.t./month
  • OKorder Service Pledge
  • Quality Product
  • Order Online Tracking
  • Timely Delivery
  • OKorder Financial Service
  • Credit Rating
  • Credit Services
  • Credit Purchasing

Add to My Favorites

Follow us:

Item specifice

Standard:
AISI
Technique:
Hot Rolled
Shape:
Round
Surface Treatment:
Dry
Steel Grade:
HRB400
Certification:
ISO,CE
Thickness:
6-50mm
Length:
6-12mm
Net Weight:
1-3mt

Common rebar is made of unfinished steel, making it susceptible to rusting. As rust takes up 

greater volume than the iron or steel from which it was formed, it causes severe internal pressure 

on the surrounding concrete, leading to cracking, spalling, and ultimately, structural failure. This is 

a particular problem where the concrete is exposed to salt water, as in bridges built in areas where 

salt is applied to roadways in winter, or in marine applications. Epoxy-coated rebar or stainless steel 

rebar may be employed in these situations at greater initial expense, but significantly lower expense 

over the service life of the project. Fiber-reinforced polymer rebar is now also being used in high-corrosion 

environments

Our Advantage

                              High quality steel products from 1 class mills in China

                              Reasonable price

                              Professionalism of the products

                              On-time delivery

                              Complete documents and certificates

                              Sincere service to meet our clients' requirements


 

Product Description :

Chemical composition (%):

Steel

C

Si

Mn

P

S

Ceq

HRB335

 

0.25

 

0.80

 

1.60

 

0.045

 

0.045

0.52

HRB400

0.54

HRB500

0.55

Mechanical properties

Steel

Rel/

MPa

Rm/

MPa

A/

%

Agt/

%

HRB335

335

455

17

 

7.5

HRB400

400

540

16

HRB500

500

630

15

Package:

Standard export packing or as customer's request

Application:

Construction, building, bridge, road. ect

Payment terms

1).100% irrevocable L/C at sight.
2).30% T/T prepaid and the balance against the copy of B/L.
3).30% T/T prepaid and the balance against L/C

Delivery time

15-30 days after receipt of L/C or deposit by T/T













 

Features
1
Pure steel quality, stable chemical contents, small tolerance.
2
Constant Quality, good drawing performance.
3
High dimension accuracy degree, accuracy degree of Level C up to 80%, smooth surface, less scale, easy to be pickled.
4
Automatic bundling with 4 lines by Machine in tidy and good looks
5
Big high quality percentage, small coil percentage, and heavy coil weight for Hard Coil.
6
High sorbitizing percentage.

Iron bar from China steel mill 6-50 mm for building

Iron bar from China steel mill 6-50 mm for building

 

Packing:

In bundles, each bundle weight 3.5 tons. Load by container or by bulk verssel.

Iron bar from China steel mill 6-50 mm for building

Iron bar from China steel mill 6-50 mm for building

 

Our service

(1) We cooperate with famous factories with advanced equipment and well trained workers.

(2) We can provide factory price with trading company service.

(3) We continuously work on the improvement of our processes, guaranteeing consistently high standards 

of quality to keep none compensation.

(4) We guarantee 24 hours response and 48 hours solution providing service.

(5) We accept small order quantity before formal cooperation.

(6) We deliver the agreed quality at the agreed time, reacting to changes in customer wishes in a flexible way.

(7) Due to our volume and selling power, we have excellent freight rates with shipping lines.

(8) We strive to always be fair and honest in our dealings with customers.

(9) We strive to work together with customers to achieve much more than we can achieve alone.

(10) Through our passion and commitment we aim to be a market leader in all our key markets. To maintain 

our position as market leader we must continue to add value in all that we do.

FAQ:

1.Q: What's your MOQ(minimum order quantity)?

A: One full container, mixed acceptable .

2. Q: What's your packing methods?

A: Packed in bundle or bulk ..

3. Q: How can I buy  CNBM products in my country?

A:Please send us an inquiry or email ,we will reply to you if there is distributor in your country

4. Q: Can we visit your factory?

 A: Warmly welcome. Once we have your schedule, we will arrange the professional sales team to follow up your case.

5. Q: How long does it take to get the product if i place an order?

 A:With the process of your requirements,we will pack and deliver in 3-7 days. If it is by sea shipment,it will take 15-45 days depending on different locations

 


Q:
Yes, steel rebars can be used in water treatment facilities. Steel rebars, or reinforcing bars, are commonly used in construction projects to strengthen concrete structures. In water treatment facilities, where concrete is used for various structures such as tanks, basins, and pipelines, steel rebars are often incorporated to provide added strength and durability. Water treatment facilities involve the treatment of water to make it safe for consumption or other purposes. Concrete is a preferred material in these facilities due to its ability to withstand the harsh conditions of water treatment processes, such as exposure to chemicals, high temperatures, and pressure. Steel rebars are essential in reinforcing the concrete structures to ensure they can withstand these demanding conditions. The corrosion resistance of steel rebars is a critical factor to consider when using them in water treatment facilities. Since water treatment facilities often involve the use of chemicals and exposure to moisture, it is important to choose rebars that have appropriate corrosion protection. This can be achieved by using stainless steel rebars or by applying protective coatings to the rebars. It is also worth noting that proper design, construction, and maintenance practices are essential in ensuring the long-term performance of steel rebars in water treatment facilities. Adequate cover thickness, concrete quality, and proper installation techniques are important considerations to prevent corrosion and ensure the rebars provide the desired structural integrity. In conclusion, steel rebars can be effectively used in water treatment facilities to reinforce concrete structures and provide the necessary strength and durability. However, it is important to choose corrosion-resistant rebars and adhere to proper design and construction practices to ensure their long-term performance in these facilities.
Q:
Yes, steel rebars can be used in dams and reservoirs. Steel rebars are commonly used as reinforcement in concrete structures, including dams and reservoirs, to enhance their strength and durability. The rebars provide added support to the concrete, helping to withstand the immense pressure and weight exerted by the water.
Q:
Yes, there are standards for the spacing of steel rebars in concrete. These standards are outlined by various organizations, such as the American Concrete Institute (ACI) and the International Building Code (IBC). The spacing requirements vary depending on the specific application, such as the type of structure, load requirements, and other factors. These standards ensure that steel rebars are placed at appropriate intervals to provide sufficient strength and reinforcement to the concrete structure.
Q:
Indeed, steel rebars have the ability to be utilized in underground construction endeavors. In fact, rebars are commonly employed in a wide array of construction projects, including those involving subterranean structures. The primary purpose of steel rebars is to fortify concrete and furnish the structure with added strength and stability. In underground construction specifically, rebars are frequently employed in the creation of foundations, walls, and columns to fortify the concrete and guarantee the integrity of the structure. By incorporating steel rebars into underground construction projects, the load-bearing capacity of the concrete is significantly enhanced, rendering it more impervious to the pressure and forces exerted by the surrounding soil and groundwater. Furthermore, steel rebars possess exceptional durability and corrosion resistance, thus rendering them appropriate for subterranean environments where they may be exposed to moisture and other potentially harmful elements. In sum, the inclusion of steel rebars in underground construction endeavors is absolutely vital in order to ensure the structural stability and longevity of these below-ground structures.
Q:
Steel rebars can significantly increase the thermal conductivity of a structure. Due to their high thermal conductivity, steel rebars act as conduits for heat transfer within the structure. This means that heat can easily flow from one part of the structure to another through the steel rebars, resulting in faster heat transmission and reduced thermal resistance. Consequently, the presence of steel rebars can enhance both the heat absorption and dissipation capacities of a structure, making it more susceptible to temperature changes and potentially affecting its overall thermal performance.
Q:What is the difference between the material of steel thread and its use?
The grade of thread steel is composed of the minimum value of the yield point of HRB and brand. H, R, and B are the first letters in English for hot-rolled (Hotrolled), ribbed (Ribbed) and reinforced (Bars) three words. Hot rolled ribbed bar is divided into HRB335 (old No. 20MnSi), HRB400 (20MnSiV, 20MnSiNb, veteran, 20Mnti), HRB500 three brands.
Q:
Yes, steel rebars can be used in the construction of sports facilities. Steel rebars provide structural reinforcement and strength, making them ideal for constructing sports facilities such as stadiums, arenas, and indoor sports complexes. They help enhance the overall durability and safety of these structures, ensuring they can withstand heavy loads and the stresses associated with sports activities.
Q:
The process of pre-stressing steel rebars involves applying a predetermined amount of stress or force to the rebars before they are subjected to loading. This technique is commonly used in the construction industry to improve the structural strength and durability of concrete structures. The process typically starts with the selection of high-strength steel rebars that have good tensile strength properties. These rebars are usually made from carbon steel or alloy steel and come in various sizes and shapes, depending on the specific application. Once the rebars are selected, they are cleaned and coated with a protective layer to prevent corrosion. After that, the rebars are placed into the desired position within the concrete structure, such as beams, columns, or slabs, according to the design specifications. Next, the pre-stressing process begins. There are two primary methods for pre-stressing steel rebars: pre-tensioning and post-tensioning. In pre-tensioning, the rebars are initially tensioned by fixing them to an anchorage point or a strong frame. The opposite end of the rebars is then pulled using hydraulic jacks or mechanical devices, applying a significant amount of force. Once the desired stress is achieved, the rebars are secured in their stressed position by casting concrete around them. After the concrete has hardened, the jacks or devices are released, transferring the stress to the rebars. In post-tensioning, the rebars are first placed into the concrete structure without any initial tension. After the concrete has hardened, a series of ducts or channels are created within the structure, running along the path of the rebars. High-strength steel strands or cables are then inserted through these ducts. The strands are anchored at one end of the structure and tensioned using hydraulic jacks or similar devices. This tensioning process applies a force to the rebars, which is transferred to the concrete, compressing it. Once the desired stress is achieved, the strands are secured and the ducts are filled with grout or mortar to protect them from corrosion. Both pre-tensioning and post-tensioning techniques result in pre-stressed steel rebars that provide several benefits to concrete structures. These include increased load-carrying capacity, improved resistance to cracking and deformation, enhanced durability, and overall better structural performance. The process of pre-stressing steel rebars is a vital aspect of modern construction practices, ensuring the longevity and safety of various types of concrete structures.
Q:
Yes, steel rebars can be used in foundation structures. Steel rebars are commonly used in reinforced concrete foundations to provide strength and structural integrity. They are used to reinforce the concrete and enhance its load-bearing capacity, making it suitable for supporting heavy structures and resisting forces like earthquakes and soil movement.
Q:
Yes, steel rebars can be used in seismic zone areas. They are commonly used as reinforcing bars in concrete structures to enhance their strength and ductility, making them capable of withstanding seismic forces. The use of properly designed and installed steel rebars can help improve the structural performance and ensure the safety of buildings in seismic zones.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request