• Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60 System 1
  • Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60 System 2
  • Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60 System 3
Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60

Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Standard:
ASTM,JIS,GB,BS
Technique:
Hot Rolled
Shape:
dbar
Surface Treatment:
non
Steel Grade:
Q235,HRB400
Certification:
non
Thickness:
6mm~50mm
Length:
6m~12m
Net Weight:
1.332kg~92.52kg

Product Description:

OKorder is offering Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60 at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60 are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60  are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

deformed steel bar grade 40

material: HRB400, BS4449 GR460B
size: 8-36mmx12m. 
short delivery time with bulk or container

packing: Mill standard export packing in bundles/coil,  around 2tons/bundle.

country of Origin: China

delivery Time: Within a 35 days

Shipment: by bulk vessel or by container

Standard

GB

HRB400

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Place of origin

Hebei, China mainland

Advantages

exact size, regular package, chemical and   mechanical properties are stable.

Type

Hot rolled deformed steel bar

Brand name

DRAGON

Usage and Applications of HRB400 Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q5: Can stainless steel rust?

A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

 

Images:

 

Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60

Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60

Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60

 

Q:What are the guidelines for the proper anchoring of steel rebars in columns?
The guidelines for the proper anchoring of steel rebars in columns are essential to ensure the structural integrity and safety of the reinforced concrete structure. These guidelines are typically based on industry standards and codes, such as the American Concrete Institute (ACI) Building Code Requirements for Structural Concrete (ACI 318). 1. Lap Length: The lap length is the minimum distance required for the overlapping of rebars to provide sufficient bond strength. It is determined based on the rebar diameter, grade, concrete strength, and design requirements. The ACI 318 provides specific formulas and tables to calculate the required lap length. 2. Embedment Length: The embedment length refers to the portion of the rebar that is embedded within the concrete column. It is important to achieve adequate embedment to transfer the applied loads effectively. The embedment length is determined based on factors such as rebar diameter, grade, and the compressive strength of concrete. 3. Development Length: The development length is the minimum length of rebar required beyond the point of critical section to develop its full tensile or compressive strength. It ensures that the rebar can resist the applied loads and prevent premature failure. The ACI 318 provides formulas to calculate the development length based on rebar diameter, grade, concrete strength, and design requirements. 4. Concrete Cover: The concrete cover refers to the thickness of concrete between the external surface of the rebar and the outer surface of the column. It provides protection against corrosion, fire, and other environmental factors. The required concrete cover is determined by considering factors such as rebar diameter, grade, exposure conditions, and design requirements. The ACI 318 provides minimum cover requirements for different rebar sizes and exposure conditions. 5. Spacing and Positioning: The rebars should be properly spaced and positioned within the column to ensure uniform load distribution and effective reinforcement. The spacing is determined based on the column dimensions, rebar diameter, and design requirements. Additionally, the rebars should be properly aligned and centered within the column to provide the intended structural strength. 6. Mechanical Anchorage: In some cases, mechanical anchorage devices, such as rebar couplers or headed bars, are used to improve the anchoring of rebars in columns. These devices provide enhanced load transfer and prevent slippage between rebars. The selection and installation of mechanical anchorage should comply with the manufacturer's recommendations and relevant standards. 7. Quality Control and Inspection: It is crucial to implement proper quality control and inspection procedures during the installation of rebars in columns. This includes verifying the dimensions, lap lengths, embedment lengths, development lengths, concrete cover, spacing, and positioning of the rebars. Regular inspections and non-destructive testing techniques, such as ultrasonic or radiographic testing, can be employed to ensure compliance with the guidelines and detect any defects or deviations. It is important to note that these guidelines may vary depending on the specific design requirements, local building codes, and structural considerations. Therefore, it is recommended to consult the relevant standards and seek professional advice from structural engineers or experts to ensure proper anchorage of steel rebars in columns.
Q:What are the guidelines for the proper cover thickness of steel rebars?
The guidelines for the proper cover thickness of steel rebars vary depending on the specific application and the code or standard being followed. However, in general, the cover thickness for steel rebars is determined based on factors such as the exposure conditions (e.g., moisture, chemicals), the structural requirements (e.g., load-bearing capacity), and the durability considerations. It is recommended to consult the applicable building codes, design standards, or engineering specifications to determine the specific guidelines for cover thickness in a given situation.
Q:Are steel rebars suitable for use in sports stadium construction?
Yes, steel rebars are suitable for use in sports stadium construction. Steel rebars, which are short for reinforcing bars, are commonly used in construction projects, including the building of sports stadiums. They provide enhanced strength and durability to the concrete structures by reinforcing them against tension forces. The use of steel rebars ensures that the stadium can withstand heavy loads, vibrations, and other external forces that may occur during sporting events or in case of natural disasters. Moreover, steel rebars are resistant to corrosion, which is crucial in maintaining the structural integrity of the stadium over time. Therefore, steel rebars are a reliable and suitable choice for use in sports stadium construction.
Q:Can steel rebars be used in road and bridge barriers?
Yes, steel rebars can be used in road and bridge barriers. Steel rebars are commonly used in construction as reinforcement in concrete structures, including road and bridge barriers, due to their high tensile strength and durability.
Q:What are the main uses of steel rebars?
The main uses of steel rebars include reinforcing concrete structures, such as buildings, bridges, and highways, to increase their strength and durability. They are also used in the construction of retaining walls, tunnels, and other underground structures. Additionally, steel rebars are commonly utilized in the manufacturing of various industrial equipment and machinery.
Q:What are the environmental benefits of using steel rebars?
Several environmental benefits are associated with the use of steel rebars in construction projects. Firstly, steel rebars can be reused or repurposed due to the high recyclability of steel. This reduces the need for new steel production and decreases the amount of waste sent to landfills. Furthermore, steel rebars have a longer lifespan compared to other construction materials like wood or concrete. This durability reduces the frequency of replacements and repairs, thereby decreasing the environmental impact related to the production and transportation of new materials. In addition, steel rebars provide superior strength and stability, leading to more resilient structures. This helps minimize the risk of structural failures or collapses, which can result in severe environmental consequences. By incorporating steel rebars, buildings and infrastructure gain enhanced overall safety and longevity, reducing the need for extensive future reconstruction or demolition. Moreover, steel rebars are resistant to corrosion, requiring less maintenance and upkeep over time. This reduces the use of chemicals and resources typically necessary for maintenance purposes, resulting in a lower environmental impact. Finally, steel rebars can be manufactured with a high percentage of recycled content, reducing the demand for new steel extraction and mitigating associated environmental impacts like deforestation and habitat destruction. Overall, the utilization of steel rebars in construction projects brings several environmental benefits, including the reduction of waste generation, increased durability, enhanced structural safety, lower maintenance requirements, and decreased reliance on new steel production.
Q:How are steel rebars recycled after demolition?
Steel rebars can be recycled after demolition by collecting them from the demolished structures, cleaning and sorting them, then sending them to a recycling facility. At the facility, the rebars are melted down in furnaces and transformed into new steel products, reducing the need for virgin steel production and conserving valuable resources.
Q:Can steel rebars be used in cold weather conditions?
Yes, steel rebars can be used in cold weather conditions. Steel has excellent cold weather performance and can maintain its structural integrity even in extremely low temperatures. However, it is important to ensure that proper construction practices are followed, such as protecting the rebars from moisture and using appropriate concrete curing methods to prevent freezing and cracking.
Q:Can steel rebars be used in tunneling and mining operations?
Yes, steel rebars can be used in tunneling and mining operations. Steel rebars provide structural reinforcement and support to the tunnels and mining structures, ensuring their stability and strength. They are commonly used to reinforce concrete structures in these operations due to their high tensile strength and durability.
Q:What is the role of steel rebars in preventing concrete creep?
The role of steel rebars in preventing concrete creep is crucial. Concrete creep refers to the gradual deformation or movement of concrete over time under sustained load. This phenomenon occurs due to the long-term stress on the concrete, causing it to slowly deform and creep. Steel rebars, which are reinforced steel bars, are used in concrete structures to counteract this creep behavior. They play a significant role in preventing concrete creep by providing tensile strength and reinforcing the structure. When concrete is subjected to a load, it experiences both compressive and tensile forces. While concrete is excellent at withstanding compressive forces, it is relatively weak in tension. This is where steel rebars come into play. By placing steel rebars within the concrete, the tensile strength of the structure is significantly enhanced. Steel has high tensile strength, making it ideal for bearing the tension experienced by the concrete. When the concrete begins to creep under a sustained load, the steel rebars resist the deformation and distribute the tensile forces throughout the structure. The presence of steel rebars helps to restrain the concrete from excessive deformation, reducing the potential for long-term creep. By reinforcing the concrete with steel rebars, the structure becomes more resistant to creep and maintains its stability and integrity over time. Moreover, steel rebars also enhance the overall durability and structural performance of the concrete. They improve the load-bearing capacity, prevent cracking, and enhance the resistance against external forces such as earthquakes or environmental factors. In conclusion, steel rebars play a vital role in preventing concrete creep by providing tensile strength and reinforcing the structure. They resist the deformation of the concrete under sustained load, ensuring its stability and long-term integrity. The use of steel rebars significantly enhances the durability and structural performance of concrete structures, making them more resistant to creep and other potential issues.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords