• Hot-rolled Round Bearing Steel GCr15,100Cr6,SAE 52100 System 1
  • Hot-rolled Round Bearing Steel GCr15,100Cr6,SAE 52100 System 2
  • Hot-rolled Round Bearing Steel GCr15,100Cr6,SAE 52100 System 3
Hot-rolled Round Bearing Steel GCr15,100Cr6,SAE 52100

Hot-rolled Round Bearing Steel GCr15,100Cr6,SAE 52100

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
500 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications of Hot-rolled Round Bearing Steel GCr15,100Cr6,SAE 52100 

1) Grade: Bearing steel SAE 52100 / GCr15 round bars

2) Diameter: 20-500mm

3) Hot rolled/forged, annealed

Application of Hot-rolled Round Bearing Steel GCr15,100Cr6,SAE 52100:

Commom steel used to produce balls and rings of bearing. The product has characteristics of uniform-chemical composition, low percentage of harmful elements, high purity, well-distributed carbide, good surface quality. It also has characteristics of wide scope of plastic,stable heat-treatment quality, uniformand high hardness, high wear resistance,high strength of touching fatigue. It has excellent machining property afer spheroidize annealing.

The use of products The product is used to produce balls and rings of bearing. Future Development By rational rolling and cooling process, the product can be spheroidized on-line and can be used in drawing and machining directly by customers. By combining re-spheroidize annealing and re-crystallisation of semi-finished product, the steel wire process can be simplified.

Packaging & Delivery of Hot-rolled Round Bearing Steel GCr15,100Cr6,SAE 52100 

Mark: Heat No. will be cold stamped and Steel grade, diameter (mm), length (mm), and the manufacturer LOGO and weight (kg) is painted.

Standard seaworthy packing or as customer required

Delivery time: Within 30 days after order is confirmed.

Q:What are the future prospects for the special steel industry?
The future prospects for the special steel industry are promising. With increasing demand for high-quality steel in sectors such as automotive, aerospace, and construction, the industry is expected to witness steady growth. Additionally, advancements in technology, such as additive manufacturing and new alloys, are likely to create new opportunities. However, challenges like fluctuating raw material prices and environmental concerns need to be addressed to ensure sustainable growth in the long term. Overall, the special steel industry is poised for a positive outlook, driven by evolving customer demands and innovation.
Q:Can special steel be used in the nuclear industry?
Yes, special steel can be used in the nuclear industry. Special steel, also known as stainless steel, is often used in nuclear power plants due to its excellent corrosion resistance, high strength, and ability to withstand high temperatures. The nuclear industry requires materials that can withstand the harsh conditions of nuclear reactors, including exposure to radiation, high-pressure and high-temperature environments, and corrosive substances. Special steel has properties that make it suitable for these conditions, such as its resistance to corrosion and its ability to maintain its mechanical properties at elevated temperatures. Moreover, special steel is also used in the construction of nuclear fuel rods, storage containers, and other critical components. It is important to note that special steel used in the nuclear industry undergoes stringent quality control measures and testing to ensure its reliability and safety.
Q:How does special steel perform in high-temperature creep conditions?
Special steel is specifically designed and engineered to perform exceptionally well in high-temperature creep conditions. It exhibits remarkable resistance to deformation and maintains its mechanical properties even at elevated temperatures, making it highly reliable and suitable for applications that require stability and strength in such environments.
Q:What are the different corrosion-resistant grades of special steel?
Various industries commonly use several grades of special steel that are resistant to corrosion. These grades are specifically designed to maintain their structural integrity and resist corrosion in harsh environments. Some examples of these corrosion-resistant grades of special steel include: 1. Stainless Steel: Stainless steel is widely used and highly popular for its corrosion-resistant properties. It contains at least 10.5% chromium, which forms a protective oxide layer on the surface, preventing corrosion. There are different types of stainless steel, such as austenitic, ferritic, and martensitic, each offering different levels of corrosion resistance. 2. Duplex Stainless Steel: Duplex stainless steel combines the corrosion resistance of both austenitic and ferritic stainless steels. It offers superior corrosion resistance compared to conventional stainless steel grades. With a high chromium content and other alloying elements like molybdenum and nitrogen, it provides enhanced resistance to pitting, crevice corrosion, and stress corrosion cracking. 3. Super Duplex Stainless Steel: Super duplex stainless steel is an even higher grade of corrosion-resistant steel compared to duplex stainless steel. It contains higher amounts of chromium and molybdenum, making it highly resistant to corrosive environments, such as seawater, chemicals, and acids. It is commonly used in offshore oil and gas industries. 4. Nickel Alloys: Nickel alloys, including Inconel and Hastelloy, are special steel grades with high corrosion resistance. These alloys have a significant nickel content, along with elements like chromium and molybdenum, which provide resistance to various corrosive environments, including high temperatures and acidic conditions. 5. Titanium Alloys: Titanium alloys are well-known for their exceptional corrosion resistance, particularly in aggressive media like seawater and chemical processing environments. These alloys have low density, high strength, and superior resistance to pitting, crevice corrosion, and stress corrosion cracking. 6. Aluminum Alloys: Certain aluminum alloys, such as 5052 and 6061, are also corrosion-resistant special steel grades. They form a protective oxide layer on the surface, offering excellent resistance to atmospheric corrosion. Aluminum alloys are commonly used in marine and aerospace applications. These examples represent only a few of the corrosion-resistant grades of special steel available. The selection of the appropriate grade depends on factors such as the specific corrosive environment, temperature, required mechanical properties, and other considerations related to the intended application.
Q:What are the different electrical grades of special steel?
There are several electrical grades of special steel that are specifically designed to have superior electrical properties. These grades include: 1. Electrical Silicon Steel: This grade of special steel contains a high percentage of silicon, typically around 3-4%. The presence of silicon helps to minimize eddy current losses and improve the magnetic properties of the steel, making it ideal for use in electrical transformers and motors. 2. Electrical Stainless Steel: This grade of special steel is made from stainless steel alloys, which are known for their excellent corrosion resistance. The electrical stainless steel has a low electrical resistivity and high thermal conductivity, making it suitable for electrical connectors, terminals, and other components that require good electrical conductivity and resistance to oxidation. 3. Electrical Tool Steel: Tool steels are commonly used in the manufacturing of various tools and dies. Some tool steels are specifically formulated to have improved electrical properties, including high electrical conductivity and resistance to heat. These grades are often used in the production of electrical contacts, switches, and other electrical components that require high wear resistance and good electrical performance. 4. Electrical Copper-Clad Steel: This grade of special steel is made by bonding a layer of copper to a steel core. The copper layer provides excellent electrical conductivity, while the steel core provides strength and durability. Electrical copper-clad steel is commonly used in applications where high electrical conductivity is required, such as in power transmission lines and grounding systems. Overall, the different electrical grades of special steel offer a range of electrical properties to meet the specific needs of various electrical applications. These grades are carefully engineered to provide optimal electrical performance, durability, and resistance to corrosion and wear.
Q:Can special steel be used in the production of artistic sculptures?
Certainly, artistic sculptures can indeed be produced using special steel. Special steel, which pertains to steel alloys specifically designed and manufactured for specific applications, presents a plethora of benefits that render it suitable for the creation of sculptures. Primarily, special steel alloys boast exceptional strength and durability, enabling sculptors to fashion large and intricate structures that can withstand external forces and environmental conditions. This robustness and resilience prove crucial, especially for sculptures placed outdoors and exposed to weather elements such as rain, wind, and extreme temperatures. Moreover, special steel alloys offer pliability and malleability, allowing for easy shaping and forming. Artists can effortlessly mold and manipulate the steel into various shapes and sizes, bringing their creative visions to life. By employing techniques like welding, cutting, and bending, sculptors can shape the steel into their desired forms, resulting in one-of-a-kind and captivating sculptures. Furthermore, special steel alloys can be finished in diverse ways, such as polishing, painting, or coating, to enhance their aesthetic appeal. This grants artists the ability to incorporate different textures, colors, and surface finishes into their sculptures, further augmenting their artistic value. Additionally, special steel alloys provide resistance to corrosion, which is especially significant for sculptures situated in outdoor or humid environments. This corrosion resistance ensures that the sculptures retain their visual allure and structural integrity over time, reducing the need for frequent maintenance and repairs. In conclusion, special steel presents a wide array of advantages that make it an exceptional choice for the production of artistic sculptures. Its strength, pliability, aesthetic appeal, and resistance to corrosion equip artists with the necessary tools to create visually striking and enduring sculptures that can be cherished for years to come.
Q:How does special steel perform in hot forging processes?
Special steel is specifically designed to withstand high temperatures and perform well in hot forging processes. When exposed to extreme heat, special steel maintains its strength and hardness, making it ideal for use in hot forging applications. One of the main advantages of special steel in hot forging is its excellent heat resistance. It can withstand high temperatures without losing its structural integrity, ensuring that it maintains its desired properties throughout the forging process. This allows for the production of forged components with consistent quality and dimensional accuracy. Furthermore, special steel exhibits good thermal conductivity, which helps to distribute heat evenly during the forging process. This enables efficient heating and reduces the risk of localized overheating or cold spots. The even distribution of heat also contributes to uniform grain structure, which enhances the overall strength and mechanical properties of the forged parts. In addition, special steel possesses excellent wear resistance and toughness, even at elevated temperatures. This ensures that the steel can withstand the significant forces and pressures involved in the hot forging process without easily deforming or failing. The combination of high strength, wear resistance, and toughness allows for the production of forged components that can withstand heavy loads and harsh operating conditions. Moreover, special steel can be easily machined and formed, allowing for intricate designs and complex shapes to be forged. This versatility makes it suitable for a wide range of hot forging applications, including automotive parts, industrial machinery components, and aerospace components. In summary, special steel performs exceptionally well in hot forging processes. Its heat resistance, thermal conductivity, wear resistance, toughness, and machinability make it an ideal material choice for producing high-quality, durable, and complex forged components.
Q:What are the properties of high-temperature stainless steel?
High-temperature stainless steel possesses excellent heat resistance, corrosion resistance, and mechanical strength even at elevated temperatures. It retains its structural integrity and is capable of withstanding extreme thermal conditions, making it suitable for various high-temperature applications such as in aerospace, power generation, and chemical industries.
Q:What are the main applications of special steel in the medical implants?
Special steels have numerous applications in the field of medical implants. They are commonly used in orthopedic implants such as joint replacements, screws, plates, and pins, due to their high strength and corrosion resistance. Special steels are also utilized in cardiovascular implants like stents and pacemaker leads, as they provide excellent biocompatibility and durability. Additionally, special steels find application in dental implants, surgical instruments, and prosthetics, owing to their ability to withstand sterilization processes and maintain mechanical integrity.
Q:How does special steel contribute to the oil and gas industry?
Special steel plays a crucial role in the oil and gas industry by offering enhanced strength, durability, and corrosion resistance needed for various applications. It is used in the construction of pipelines, drilling equipment, storage tanks, and offshore platforms, ensuring reliable and safe operations in harsh environments. Additionally, special steel's high heat resistance enables it to withstand extreme temperatures in refining processes, while its resistance to cracking and wear ensures the longevity of critical components. Overall, special steel contributes significantly to the oil and gas industry by providing the necessary materials for efficient and secure exploration, production, and transportation of oil and gas resources.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords