Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality

Ref Price:
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
20000 m.t./month
  • OKorder Service Pledge
  • Quality Product
  • Order Online Tracking
  • Timely Delivery
  • OKorder Financial Service
  • Credit Rating
  • Credit Services
  • Credit Purchasing

Add to My Favorites

Follow us:

Product Description:

OKorder is offering Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

 

Product Advantages:

OKorder's Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality are durable, strong.packed and suitable for construction

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335 HRB400 BS4449 Grade460 ASTM Grade40 Grade60

Certificates: ISO, SGS, BV, CIQ

Length:6m 8m 9m 12m

Packaging: Export packing, packed by coil

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: How many tons per bundle?

A4: Around 2-3tons

Q5: How to avoid the rust after deliver the goods to the loading port?

A5: We will keep the goods at the port covered with water-proof material

Q6: What is the chemical composition and physical properties of HRB400?

A6:

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

 Q7:What is chemical composition and physical properties of 500B?

A7:

BS4449 500B

Chemical  Composition(%)

C

Mn

Si

S

P

≤0.24

≤0.45

≤0.16

≤0.05

≤0.31

Physical capability

Yield Strength(N/cm²)

Tensile Strength(N/cm²)

Elongation (%)

≥650

≥500

19

Q8: What is the chemical composition and physical properties of HRB335?

A8:

HRB335

Chemical  Composition(%)

C

Mn

Si

S

P

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

Physical capability

Yield Strength(N/cm²)

Tensile Strength(N/cm²)

Elongation (%)

≥335

≥490

≥16

 

Images:

Q:
There are several advantages of using fiber-reinforced polymer (FRP) rebars over steel rebars. Firstly, FRP rebars are significantly lighter than steel rebars, making them easier to handle and transport. Additionally, FRP rebars have a higher tensile strength than steel rebars, allowing for greater flexibility in design and reducing the need for additional reinforcement. FRP rebars are also non-corrosive, unlike steel rebars which can rust over time, making them more durable and longer-lasting. Lastly, FRP rebars are non-conductive, making them suitable for use in areas with electrical or magnetic fields. Overall, the use of FRP rebars offers numerous advantages in terms of weight, strength, durability, and versatility.
Q:
In construction projects, steel rebars play a critical role by providing reinforcement and strength to concrete structures. It is crucial to ensure the quality of steel rebars in order to guarantee the safety and durability of the overall construction. To inspect the quality of steel rebars on construction sites, various methods are commonly used. The first and most basic method of quality inspection is visual examination. This involves visually inspecting the rebars for any visible defects such as cracks, deformations, rust, or surface irregularities. Any rebars with such flaws are immediately identified and rejected. Another method involves measuring and checking the dimensions of the rebars. Inspection personnel use measuring tools like calipers or tape measures to verify the length, diameter, and other dimensions of the rebars. Any deviation from the specified tolerances may result in rejection. Magnetic Particle Testing (MPT) is a non-destructive testing method that is commonly employed to detect surface and near-surface defects in steel rebars. In this technique, the rebar is magnetized and ferromagnetic particles are applied, which accumulate at any surface defects or cracks. Trained inspectors carefully examine the surface to identify any areas of concern. Ultrasonic Testing (UT) is another non-destructive testing method used for inspecting rebars. It involves transmitting ultrasonic waves through the rebar. These waves reflect back differently when they encounter defects like voids, cracks, or inclusions. Trained technicians analyze the reflected waves to identify and assess the quality of the rebars. Tensile Testing is carried out to determine the tensile strength of the rebars, which is crucial in assessing their quality. A sample rebar is pulled until it breaks, and the force required to do so is measured. This test helps determine the strength and ductility of the rebar, ensuring it meets the required standards. Chemical analysis is often conducted on steel rebars to ensure they meet the specified composition requirements. Samples are collected from the rebars, and various tests are performed to determine the chemical composition, including carbon, manganese, and other alloying elements. This analysis helps ensure that the rebars possess the necessary properties for the intended application. These inspection methods are typically carried out by qualified and experienced personnel, such as certified welding inspectors or quality control technicians. By implementing these quality inspection procedures, construction sites can ensure that the steel rebars used in their projects meet the required standards, thereby ensuring the safety and longevity of the structures being constructed.
Q:
Some guidelines for protecting steel rebars during concrete pouring include ensuring proper placement and alignment of rebars, using plastic or epoxy-coated rebars to prevent corrosion, providing adequate concrete cover over the rebars, using protective caps on exposed ends, and avoiding over-vibration of the concrete to prevent rebars from shifting. Additionally, it is important to protect rebars from moisture and contamination during storage and construction, and to follow industry standards and specifications for reinforcement placement and protection.
Q:
Yes, steel rebars can be used in high-security facility construction. Steel rebars are strong and durable, making them a suitable choice for reinforcing concrete structures. In high-security facilities, such as prisons or government buildings, it is crucial to ensure the construction materials provide maximum strength and resistance against potential threats. Steel rebars offer excellent tensile strength, which helps reinforce concrete and enhance the overall structural integrity of the building. Additionally, steel rebars can be customized to meet the specific security requirements of the facility, such as using thicker rebars or increasing their spacing for added reinforcement. Therefore, steel rebars are commonly used in high-security facility construction to provide a robust and secure infrastructure.
Q:
Steel rebars have a significant impact on the thermal conductivity of concrete. Due to their high thermal conductivity, steel rebars act as conductive pathways, allowing heat to easily transfer through the concrete. This results in an increased overall thermal conductivity of the concrete structure.
Q:
Yes, steel rebars can be used in marine or coastal construction projects. However, it is important to ensure that the rebars are made of corrosion-resistant steel or are properly protected against corrosion. This is because the salty and humid environment in marine or coastal areas can accelerate the corrosion process, which can compromise the structural integrity of the rebars and the overall construction.
Q:
The proper placement of steel rebars in concrete structures is essential to ensure the structural integrity and durability of the construction. Here are some guidelines to follow for the correct placement of rebars: 1. Design Considerations: The first step is to refer to the structural drawings and specifications provided by the engineer. These documents will outline the required rebar sizes, spacing, and any specific details or arrangements needed for the project. 2. Rebar Size and Spacing: The size and spacing of rebars are determined based on the structural requirements and load-bearing capacity of the concrete structure. The diameter and spacing of the rebars should adhere to the design specifications to provide adequate reinforcement. 3. Concrete Cover: The concrete cover refers to the distance between the outer surface of the rebar and the edge of the concrete. This cover protects the rebars from corrosion and provides fire resistance. It is crucial to maintain the specified concrete cover to ensure the longevity of the rebars. 4. Lap Length: In cases where rebars need to be spliced or joined together, a lap length is specified. The lap length ensures sufficient overlap for the transfer of stress between the rebars and prevents any weak points in the structure. 5. Alignment and Positioning: Rebars should be properly aligned and positioned within the concrete formwork. They should be placed in the center of the concrete section to effectively resist tension and compression forces. The use of spacers or chairs can help maintain the desired rebar position during the pouring and setting of the concrete. 6. Clearances and Edge Distance: Adequate clearances must be maintained between rebars to allow for proper concrete flow during casting. Similarly, minimum edge distances should be maintained to prevent rebar corrosion and ensure proper concrete cover. 7. Tying and Fixing: Rebars should be securely tied and fixed at intersections to prevent displacement during concrete placement. Properly tying the rebars using wire or approved connectors helps maintain their position and ensures the structural integrity of the concrete. 8. Inspection and Quality Control: Regular inspections should be conducted during the concrete pouring process to verify that the rebars are placed correctly and according to the design specifications. Any deviations or discrepancies should be addressed promptly to avoid compromising the structural integrity of the concrete structure. By following these guidelines, construction professionals can ensure the proper placement of steel rebars in concrete structures, resulting in safe and durable constructions that can withstand the design loads and provide long-term structural stability.
Q:
Yes, steel rebars can be used in slabs and beams. Steel rebars, also known as reinforcing bars, are commonly used in concrete construction to provide reinforcement and increase the strength and durability of the structure. In slabs, rebars are typically placed in a grid pattern to distribute the load and prevent cracking or failure of the concrete. They help to control and minimize the formation and propagation of cracks caused by shrinkage, temperature changes, or external loads. Similarly, in beams, rebars are used to enhance the structural integrity and load-bearing capacity of the concrete members. By adding steel rebars to slabs and beams, the overall strength, stiffness, and resistance to bending and shearing forces are significantly improved, ensuring a safer and more reliable construction.
Q:
The reinforcement provided by steel rebars is essential in preventing cracking in concrete. By increasing the overall strength and durability of the structure, steel rebars counteract the tensile forces that cause concrete to crack. To create a reinforcing mesh or framework, high-strength steel rebars are strategically placed within the concrete. This mesh acts as a skeleton, effectively absorbing and distributing the tensile forces throughout the structure. As a result, cracks are prevented from forming. When external loads, such as heavy weights or seismic forces, are applied to the concrete, the rebars bear the tensile stress instead of the concrete itself. This is possible because steel rebars have a much higher tensile strength compared to concrete. By distributing stress more evenly, the rebars minimize crack formation and help maintain the concrete's structural integrity. Additionally, steel rebars improve the bond between the concrete and the reinforcement, further preventing cracks. While concrete has excellent compressive strength, its tensile strength is relatively low. The inclusion of rebars increases the overall tensile strength of the concrete, reducing the likelihood of cracking under tension. The bond between the rebars and the concrete creates a composite material that can effectively withstand both compressive and tensile forces. In summary, steel rebars play a crucial role in preventing cracking in concrete. They provide reinforcement, absorb tensile forces, and enhance the overall strength and durability of the structure. By acting as a skeleton within the concrete and distributing stress, they prevent the formation of cracks and ensure the long-lasting stability of the construction.
Q:
Steel rebars are indeed applicable in the construction of road bridges or flyovers. Owing to their remarkable strength and durability, they are widely utilized as reinforcement in concrete structures such as bridges and flyovers. By fortifying the concrete, these rebars amplify its structural integrity and load-bearing capacity, making it capable of withstanding heavy traffic loads and enduring the forces encountered by road bridges and flyovers. Furthermore, steel rebars furnish heightened resistance to corrosion, a vital attribute in bridge construction where exposure to environmental factors is prominent. In summary, the utilization of steel rebars guarantees the structural stability, longevity, and safety of road bridges and flyovers.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request