• High-quality Carbon Seamless Steel Pipe For Boiler CNBM System 1
  • High-quality Carbon Seamless Steel Pipe For Boiler CNBM System 2
  • High-quality Carbon Seamless Steel Pipe For Boiler CNBM System 3
High-quality Carbon Seamless Steel Pipe For Boiler CNBM

High-quality Carbon Seamless Steel Pipe For Boiler CNBM

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 pc
Supply Capability:
30 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

Thickness:

3 - 60 mm

Section Shape:

Round

Outer Diameter:

21.3 - 1220 mm



Secondary Or Not:

Non-secondary

Application:

fluid pipe,boiler pipe, structural pipe, oil/gas/water pipe etc

Technique:

Hot Rolled

Certification:

ISO9001-2000, ISO14000, ISO18000 , API 5L

Surface Treatment:

Painted, Oiled, galvanized or phosphate etc

Special Pipe:

API Pipe

Alloy Or Not:

Is Alloy

Technique::

Hot rolled or cold rolled

Special pipe::

API/ ASME/thickwall/oil/gas/water pipe

Length::

3-12m

Treatment of two ends::

Beveled end , plain end etc

Brand::

Bai Chuan

Third Party Inspection::

BV, SGS etc.

Schedule::

SCH10-SCH160, XS, XXS

Other Material::

10#, 20#, 16Mn, Q345 etc

Material Type::

Carbon steel/ Low alloy steel

Producing standard::

American/Japanese/ German/ Britain/ Chinese standard

Grade:

A53(A,B),A106(B,C),A210,API J55,St37,STPG42,A53-A369,API J55-API P110,ST35-ST52

Standard:

BS EN10296,JIS G3452-2004





1. Out Diameter:

21.3mm-1220mm 

2. Wall Thickness:

3mm-60mm

3. Length:

3m-12m

4. Producing Standard:

  • American ASME B36.10M, ASTM, API 5L, API 5CT

  • Japanese JIS

  • German DIN

  • Chinese GB

  • BS standard

5. Main Material:

(Carbon Steel & Low Alloy steel)

  • ASTM A53, A106, A210, A252, A333 etc;

  • X42, X46, X52, X60, X65, X70 etc;

  • JIS STPG42, G3454, G3456 etc;

  • German St37, St42, St45, St52, DIN1626, DIN17175

  • Chinese 20#, Q345, 16Mn etc.

6. Special specifications:

Available according to customer’s requirements and quantity.

7. End Shape:

Beveled end , plain end, varnished, or adding plastic caps to protect the two ends as per customer’s requirements.

8. Surface treatment:

Painted, Oiled, galvanized, phosphate etc.

9. Usage:

  • Widely used in the mechanical treatment field, petrochemical industry, transport and construction field

  • Ordinary structural purposes and mechanic structural purposes, for example in construction field, fulcrum bearing etc;

  • The transportation of fluids in the projects and big equipments, for example transport of water, oil, gas etc

  • Can be used in low and medium pressure boiler for the transportation of fluids, for example steam tube, big smoke tube, small smoke tube, generating tube etc

10. Certificates:

ISO9001-2000, ISO14000, ISO18000, API 5L certificate

11. Third party inspection:

Welcome you to send a third party inspecting company (BV, SGS etc) to check the quality of our final products.

12. Pictures:

our producing flow chart, our factory, production line, inspecting equipments, our products are listed below for your reference.


Q:Can steel pipes be used for water supply networks?
Yes, steel pipes can be used for water supply networks. Steel pipes are commonly used in water supply systems due to their durability, strength, and resistance to corrosion. They are able to withstand high pressure and can safely transport water over long distances. Additionally, steel pipes are highly versatile and can be easily connected, making them suitable for various water supply network applications.
Q:How do you determine the required support spacing for steel pipes?
The required support spacing for steel pipes is determined based on several factors including the pipe material, size, weight, and operating conditions. Generally, industry standards and guidelines such as those provided by the American Society of Mechanical Engineers (ASME) are followed to calculate the appropriate spacing. These standards take into account factors such as pipe deflection, thermal expansion, vibration, and load-bearing capacity to ensure the pipes are adequately supported and do not experience excessive stress or deformation.
Q:How are steel pipes transported from the manufacturing site to the construction site?
Steel pipes are typically transported from the manufacturing site to the construction site through various means, including trucking, rail transportation, and sometimes even by barges or ships for longer distances. The chosen mode of transportation depends on factors such as the distance between the sites, the quantity and size of the pipes, and the available infrastructure.
Q:Can steel pipes be used for transporting slurry?
Yes, steel pipes can be used for transporting slurry. Steel pipes are known for their durability and strength, making them suitable for handling abrasive materials like slurry. The smooth interior surface of steel pipes helps to minimize friction and prevent clogging, ensuring efficient transportation of slurry. Additionally, steel pipes can withstand high pressure and are resistant to corrosion, making them a reliable choice for slurry transport.
Q:Can steel pipes be used for steam applications?
Yes, steel pipes can be used for steam applications. Steel pipes are known for their high strength and durability, making them suitable for carrying steam at high temperatures and pressures. They are resistant to corrosion and can withstand the harsh conditions of steam systems, making them a popular choice in various industries such as power generation, oil and gas, and chemical processing.
Q:How are steel pipes protected against internal scaling?
Steel pipes are protected against internal scaling through a process called internal coating or lining. This involves the application of a protective layer on the interior surface of the pipe to prevent the formation of scales or deposits. There are several methods used for this purpose. One common method is the application of epoxy coatings. Epoxy is a durable and corrosion-resistant material that forms a continuous barrier on the inside of the pipe. It helps to prevent the accumulation of minerals and other substances that can lead to scaling. Epoxy coatings are often applied by spraying or brushing onto the pipe's interior surface and then cured to form a hard and smooth finish. Another method used for protecting steel pipes against internal scaling is cement mortar lining. In this process, a layer of cement mortar is applied to the inside of the pipe. The cement mortar acts as a barrier against scaling and also provides additional protection against corrosion. This lining process is commonly used for large-diameter pipes that are used in water distribution systems. Polyethylene (PE) lining is another technique employed to protect steel pipes from internal scaling. PE lining involves the insertion of a high-density polyethylene liner into the pipe. This liner acts as a barrier against scaling and also helps to reduce friction, improving the flow of fluids through the pipe. PE lining is often used in applications where a smooth interior surface is required, such as in oil and gas pipelines. In addition to these methods, regular maintenance and cleaning of the pipes can also help prevent internal scaling. This may involve the use of chemical cleaning agents or mechanical cleaning techniques to remove any deposits that have formed on the pipe's interior surface. Overall, protecting steel pipes against internal scaling is crucial to maintain their efficiency and prolong their lifespan. By utilizing various coating and lining methods, as well as implementing proper maintenance practices, the risk of internal scaling can be significantly reduced.
Q:Can steel pipes be used for underground stormwater systems?
Yes, steel pipes can be used for underground stormwater systems. Steel pipes are durable and resistant to corrosion, making them a suitable choice for underground applications. Additionally, steel pipes can handle high volumes of stormwater, making them ideal for stormwater management systems.
Q:Can steel pipes be used for electrical conduits?
No, steel pipes are not typically used for electrical conduits as they are conductive and can pose a safety risk. Electrical conduits are usually made of non-conductive materials such as PVC or metal with insulating coatings.
Q:How are steel pipes protected against rusting?
Corrosion protection is employed to safeguard steel pipes from rusting. Various methods are utilized for preventing the formation of rust on steel pipes, including the following: 1. Coatings: To create a barrier against rust, different coatings are applied to the surface of steel pipes. These coatings prevent oxygen and moisture from reaching the metal surface and initiating the rusting process. Options for coatings include epoxy, polyethylene, zinc, or a combination of these materials. 2. Galvanization: Steel pipes are immersed in a molten zinc bath to undergo galvanization. This process forms a protective layer of zinc on the surface of the pipes, acting as a sacrificial barrier. If any small areas of the pipe surface are exposed, the zinc coating will corrode instead of the steel, providing continuous protection against rust. 3. Cathodic Protection: Electrical current is utilized to safeguard steel pipes in this method. By connecting the pipes to a sacrificial anode, usually made of zinc or magnesium, the anode will corrode instead of the steel pipes when exposed to moisture and oxygen. This method is commonly employed in underground or underwater applications. 4. VCI (Vapor Corrosion Inhibitor) Technology: Chemical compounds are used in VCI technology to release a vapor that protects steel pipes from rusting. These compounds form a thin layer on the surface of the pipes, inhibiting the corrosion process by neutralizing oxygen and moisture. 5. Regular Maintenance: Aside from the aforementioned methods, regular inspection and maintenance play a crucial role in preventing rust formation on steel pipes. This involves cleaning the pipes, removing any accumulated debris or corrosive substances, and repairing any damaged coatings or protective layers. In summary, these corrosion protection methods effectively ensure the longevity and durability of steel pipes in various industrial, commercial, and residential applications by safeguarding them against rusting.
Q:What is the difference between carbon steel pipes and stainless steel pipes?
The main difference between carbon steel pipes and stainless steel pipes lies in their composition and properties. Carbon steel pipes are primarily made of iron and carbon, with small amounts of other elements. They are less expensive, have higher tensile strength, and are suitable for transporting fluids and gases in various industries. On the other hand, stainless steel pipes contain iron, chromium, and other alloying elements. They are more expensive, have higher corrosion resistance, and are commonly used in applications where hygiene, durability, and aesthetic appeal are essential, such as in the food, pharmaceutical, and architectural industries.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords