• HIGH QUALITY 3PE COATED STEEL PIPE System 1
HIGH QUALITY 3PE COATED STEEL PIPE

HIGH QUALITY 3PE COATED STEEL PIPE

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing


Packaging & Delivery

Packaging Detail:Plastic plugs in both ends Hexagonal bundles of max. 2000kg with several steel strips Two tags on each bundle Wrapped in waterproof paper PVC sleeve and sackcloth with several steel strips Plastic caps
Delivery Detail:within 45 days after confirmation


Specifications

API 5L PSL1/PSL2 Gr.B/X42/X52/X56/X60/X65/X70/X80 3PE/FBE Coated Line Pipe
OD: 2"-30",
WT:0.250"-4"
L:random,fixed,SRL,DRL

Application

Used for construction of long distance pipelines for combustible liquids and gases, nuclear station pipelines, heating system pipelines, general-purpose pipelines, vessels manufacturing, mechanical engineering and instrumental engineering.


DISTINCTIVES FEATURES

A) The External surface is shot-blasted (Sa 2 1/2) by removing millscale and rust, obtaining metal surface to facilities the adhesion.
B) The pipe is heated in a electric or gas oven at a controlled temperature.
C) The adhesive is then applied by hot meit or copolymer. It binds the polythylene to the steel.
D) Immediately afterwards, the extruded polyethylene/polyprophylene is coated on the pipe.
E) After application of the polyethylene/polyprophylene, the pipe is coated by spraying water.


Process


SEAMLESS

HOT ROLLED

COLD DRAWN


WELDED

ERW (Electric Resistance Welded)

HFI (High Frequency Induction)

EFW(ELECTRIC FUSION WELDED TUBE)

LSAW (Longitudinal Submerge-arc Welded) UO(UOE),RB(RBE),JCO(JCOE)

DSAW (Double Submerged arc welded)

SAW (Spiral Welded)

SSAW (Spiral Submerged-arc Welded)


Quality Standard


SEAMLESS PROCESS

GB/T 8163 Seamless steel tubes for liquid service

ASTM A106 Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service

DIN 1629 SEAMLESS CIRCULAR TUBES OF NON ALLOY STEELS WITH SPECIAL QUALITY REQUIREMENTS

API 5L Line Pipe


WELDED PROCESS

ERW HFI , EFW, LSAW, DSAW

GB/T3091 Welded steel pipe for low pressure liquid delivery

GB/T9711 Petroleum and natural gas industries--Steel pipe for pipelines

EN10217 Welded steel tubes for pressure purposes.

IS 3589 Steel tubes for water and sewage

IS 1978-1982 Steel tubes for use in transportation of oil; gas & Petroleum products

BS 1387 Steel Tubes for use for Water, Gas, Air and Steam

ASTM A53 Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

DIN 2458 WELDED STEEL PIPES AND TUBES

API 5L Line Pipe


SAW SSAW

SY/T5037 Spiral submerged arc-welded steel pipe for pipelines for low pressure field fluid service

SY/T 5040 Spiral submerged arc-welded steel pipe piles

CJ/T 3022 Spiral submerged-arc welded steel pipe for municipal heat supply

IS 1978 Steel tubes for use in transportation of oil; gas & Petroleum products

API 5L Line Pipe


Coating Standard

ANSI/AWWA C104/A21.4 American National Standard for Cement-Mortar Lining for Ductile-Iron Pipe and Fittings for Water

ISO 21809 Petroleum and natural gas industries -- External coatings for buried or submerged pipelines used in pipeline transportation systems

DIN 30670 Polyethylen coatings of steel pipes and fittings


Steel Grade


SEAMLESS PROCESS

GB/T 8163 10# 20# 35# 45# 16MN(Q345B)

GB 3087 10# 20# 35# 45# 16MN(Q345B)

GB 5310 20G 12Cr1MoV 12Cr1MoVG 12CrMoG

ASTM A106 Gr A Gr B Gr C

DIN 1629 St 37.0 St 44.0 St 52.0

API 5L A B X42X46 X52 X60 X65 X70 X80


WELDED PROCESS

GB/T3091 SY/T5037 SY/T 5040CJ/T 3022

Q195 Q215 Q235 Q275 Q295 Q345 08F 08 08AL 08F 10F 10 HG5 DF08 SPHC M8

BS 1387 EN10217 S185 S235 S235JR S235 G2H S275 S275JR S355JRH S355J2H St12 St13 St14 St33 St37 St44 ST52

ASTM A 53 Gr. A Gr B Gr C Gr.D

API 5L A B X42 X46 X52 X56 X60 X65 X70

GB/T9711 L175 L210 L245 L290 L320 L360 L290 L320 L360 L390 L415 L450 L485 L555


Size


SEAMLESS PROCESS

Outer Diameter Hot finish 2" - 30" Cold drawn 0.875" - 18"

Wall Thickness Hot finish 0.250" - 4.00" Cold drawn 0.035" - 0.875"

Length Random Length Fixed Length SRL DRL


WELDED PROCESS

ERW HFI EFW

Outer Diameter 6mm-610mm (1/16"-24")

Wall Thickness 0.3mm-22mm

Length 0.5mtr-20mtr


LSAW DSAW

Outer Diameter 219mm-1820mm

Wall Thickness 5.0mm-50mm

Length 6mtr-18mtr


SAW SSAW

Outer Diamter 219.1mm - 4064mm (8" - 160")

Wall Thickness 3.2 mm - 40mm

Length 6mtr-18mtr


End

square ends (straight cut saw cut and torch cut);

beveled for welding (All line piping is square cut to the tolerance specified and bevelled to ANSI B16.25. An angle of 30º (-0º +5º) and a landing of 16 mm ±08 mm is applied. Schedule 160 material is supplied without bevelling.)


Surface Lightly oiled Hot dip galvanized Electro galvanized Black Bare Varnish coating/Anti rust oil Protective Coatings (Coal Tar Epoxy Fusion Bond Epoxy 3-layers PE)


Test Chemical Component Analysis Mechanical Properties (Ultimate tensile strength Yield

strength Elongation) Technical Properties (Flattening Test Bending Test Hardness Test Blow Test Impact Test etc.) Exterior Size Inspection Hydrostatic Test(The standard pressure is limited to 207 MPa (3000 psi)) X-ray Test.


Mill Test Certificate EN 10204/3.1B

Third party inspection SGS BV Lloyds etc.


Q:How do steel pipes compare to other types of piping materials?
Steel pipes are highly durable and have excellent strength, making them superior to other types of piping materials in terms of longevity and resistance to extreme conditions. They are also more cost-effective, as steel pipes require less maintenance and have a longer lifespan. Additionally, steel pipes have better corrosion resistance, making them ideal for various applications, especially in industries where chemical exposure is common.
Q:How are steel pipes used in industrial manufacturing processes?
Steel pipes are commonly used in industrial manufacturing processes for various purposes such as transporting fluids, gases, and solids, providing structural support, and facilitating heat transfer. They are used in industries like oil and gas, construction, automotive, and manufacturing, where they are utilized for plumbing systems, conveyance of materials, and as a durable and reliable medium for handling high-pressure and high-temperature applications.
Q:How are steel pipes used in the manufacturing of irrigation systems?
Steel pipes are commonly used in the manufacturing of irrigation systems due to their durability, strength, and ability to withstand high water pressure. These pipes are used to transport water from the source to the farmland or fields, ensuring efficient and reliable irrigation. Additionally, steel pipes are corrosion-resistant, making them ideal for use in various environmental conditions.
Q:Are steel pipes suitable for solar power plants?
Indeed, solar power plants find steel pipes to be a fitting choice. Owing to their enduring nature, resilience, and ability to resist corrosion, steel pipes are commonly employed in the construction of solar power plants. They serve diverse purposes within these plants, encompassing the conveyance of fluids like water or heat transfer fluids, as well as proffering structural reinforcement for solar panels and other apparatus. Steel pipes excel at enduring high temperatures and pressure, thus rendering them an optimal choice for the efficient functioning of solar power plants. Moreover, steel pipes are readily obtainable and cost-effective, thereby establishing their popularity in the construction of solar power plants.
Q:What is the difference between black and galvanized steel pipes?
The main difference between black and galvanized steel pipes is the protective coating. Black steel pipes are untreated and prone to rusting, while galvanized steel pipes are coated with a layer of zinc to prevent corrosion. This zinc coating makes galvanized pipes more durable and suitable for outdoor applications, such as plumbing or fencing, whereas black steel pipes are commonly used for indoor plumbing or gas lines.
Q:How do steel pipes handle water hammer?
Steel pipes handle water hammer by absorbing and dissipating the energy caused by sudden changes in water flow or pressure. The strong and rigid nature of steel pipes allows them to withstand the impact of water hammer without deforming or breaking. Additionally, the smooth interior surface of steel pipes minimizes turbulence and reduces the likelihood of water hammer occurring.
Q:How to identify stainless steel pipe and steel pipe?
The welded pipe is rolled into the steel tubular to sew or spiral seam welded in the manufacturing method, and is divided into low pressure fluid delivery with welded steel pipe, spiral welded steel pipe, welded steel pipe, welded pipe roll etc.. Seamless steel pipe can be used in various industries, such as liquid, pneumatic, pipeline and gas pipeline. Welding pipes can be used in water pipelines, gas pipelines, heating pipes, electrical appliances, pipelines and so on.
Q:Can steel pipes be used for offshore applications?
Yes, steel pipes can be used for offshore applications. Steel pipes are commonly used in offshore oil and gas drilling operations, as they have high strength, durability, and resistance to corrosion, which are essential qualities for withstanding harsh marine environments. Additionally, steel pipes can be easily welded and fabricated to meet specific offshore project requirements.
Q:What is the maximum allowable deflection for steel pipes?
The maximum allowable deflection for steel pipes depends on various factors such as pipe diameter, wall thickness, material strength, and the intended application. It is typically determined by industry standards and specific engineering considerations.
Q:What is the difference between carbon steel pipes and stainless steel pipes?
The main difference between carbon steel pipes and stainless steel pipes lies in their composition. Carbon steel pipes are primarily made of iron and carbon, while stainless steel pipes contain iron, carbon, and a minimum of 10.5% chromium. This chromium content in stainless steel pipes creates a protective layer of chromium oxide on the surface, making them highly resistant to corrosion. On the other hand, carbon steel pipes are more susceptible to corrosion and require additional coatings or treatments to prevent rusting. Additionally, stainless steel pipes offer better heat resistance and can withstand higher temperatures compared to carbon steel pipes.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords