• High Intensity Seismic Resistent Deformed Steel Rebars HRB500E System 1
  • High Intensity Seismic Resistent Deformed Steel Rebars HRB500E System 2
  • High Intensity Seismic Resistent Deformed Steel Rebars HRB500E System 3
  • High Intensity Seismic Resistent Deformed Steel Rebars HRB500E System 4
  • High Intensity Seismic Resistent Deformed Steel Rebars HRB500E System 5
  • High Intensity Seismic Resistent Deformed Steel Rebars HRB500E System 6
High Intensity Seismic Resistent Deformed Steel Rebars HRB500E

High Intensity Seismic Resistent Deformed Steel Rebars HRB500E

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
6-34mm
Width:
6-34mm
Length:
12m
Outer Diameter:
6-34mm
Net Weight:
10kg
Packaging:
seaworthy packaging

High Intensity Seismic Resistent Deformed Steel Rebars HRB500E

Details of  the High Intensity Seismic Resistent Deformed Steel Rebars HRB500E

Standard & Grade:GB1499-98 : HRB335,HRB400,HRB500
BS4449-1997 : GR460,GR500
CAN/CSA-G30.18-M92 : 400W
ASTM A615 : Gr.40, Gr.60
Diameter:6mm;8mm;10mm;12mm;14mm;16mm;18mm;20mm;22mm;25mm;28mm;30mm;32mm;35mm;40mm
Length:6m,9m,12m
Packing:Bundle packing
Origin:China
Application:Construction,Road,Machinery processing,Welding fields.
Delivery time:10-25 days
Shipment:By bulk vessel or Container
Documents:Mill Test Certificate,Commercial Invoice,Packing List,Certificate of Origin

 

Company Introduction  of  the High Intensity Seismic Resistent Deformed Steel Rebars HRB500E

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

 

High Intensity Seismic Resistent Deformed Steel Rebars HRB500E

High Intensity Seismic Resistent Deformed Steel Rebars HRB500E

Packaging & Delivery of the High Intensity Seismic Resistent Deformed Steel Rebars HRB500E

 

Packaging DetailSea worthy packing /as per customer's packing instruction
Delivery Detail15 ~ 40 days after receiving the deposit

FAQ

 

Are you a trading company or manufacturer?Manufacturer
What’s the MOQ?1000m2 
What’s your delivery time? 15-20 days after downpayment received
Do you Accept OEM service?Yes
what’s your delivery terms?FOB/CFR/CIF
What's the Payment Terms?30% as deposit,70% before shipment by T/T
Western Union acceptable for small amount.
L/C acceptable for large amount.
Scrow ,Paybal,Alipay are also ok 
Why  choose  us?Chose happens because of quality, then price, We can give you both.
Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.
What's your available port of Shipment?Main Port, China
What’s your featured  services?Our service formula: good quality+ good price+ good service=customer's trust
Where are your Market?Covering more than 160 countries in the world

 

 

Q:What is the recommended maximum length of cantilevered steel rebars?
The recommended maximum length of cantilevered steel rebars can vary depending on factors such as the specific application, load requirements, and design standards. It is important to consult structural engineers or relevant building codes to determine the appropriate maximum length for a specific project.
Q:What is the effect of vibration on steel rebars?
Vibration can have both positive and negative effects on steel rebars. On one hand, controlled vibration during the pouring and placement of concrete can help to remove air bubbles and ensure better bonding between the rebar and concrete, enhancing the overall structural integrity. On the other hand, excessive or prolonged vibration can lead to fatigue and weakening of the rebars, potentially compromising their strength and durability over time. Therefore, it is essential to carefully regulate and monitor vibration to maintain the optimal balance for the performance and longevity of steel rebars.
Q:Can steel rebars be used in structures subjected to chemical exposure?
Steel rebars can be used in structures subjected to chemical exposure, but their suitability depends on the specific type and concentration of chemicals involved. In general, stainless steel rebars or epoxy-coated rebars are preferred for such applications as they provide better resistance to corrosion and chemical attack compared to plain carbon steel rebars. However, it is important to conduct a thorough evaluation of the chemical environment and consult with experts to determine the most appropriate rebar material for the specific structure and its intended use.
Q:How are steel rebars tested for quality and strength?
Steel rebars are tested for quality and strength through a series of standardized tests. These tests ensure that the rebars meet the required standards and can withstand the expected loads and stresses. One common test is the Tensile Test, which measures the maximum amount of stress a rebar can withstand before it breaks. In this test, a sample rebar is pulled until it fractures, and the force required to break it is measured. This test provides valuable information about the rebar's ultimate tensile strength, yield strength, and elongation. Another important test is the Bend Test, which evaluates the rebar's ductility and ability to withstand bending without breaking. In this test, a sample rebar is bent to a specific angle, and any cracks or fractures are closely examined. The rebar is deemed acceptable if it doesn't show any signs of failure. Additionally, Chemical Analysis is performed to determine the chemical composition of the rebar. This test ensures that the steel meets the required chemical composition standards, as different compositions can affect the rebar's strength and durability. Furthermore, the Dimensional Test checks the dimensions, weight, and shape of the rebar to ensure they comply with the specified standards. Any deviations from the required measurements can compromise the rebar's structural integrity. Moreover, the rebar's Surface Condition is examined visually to assess any signs of rust, cracks, or other defects that may affect its performance. Proper surface condition is crucial as it ensures good bonding with the surrounding concrete. Finally, some rebars undergo Non-Destructive Testing such as ultrasonic testing or magnetic particle inspection to detect any hidden defects or cracks that may not be visible to the naked eye. Overall, these testing methods are employed to ensure that steel rebars have the required quality and strength to be used in construction projects, providing the necessary reinforcement for reinforced concrete structures.
Q:What are the guidelines for proper anchoring of steel rebars in concrete structures?
For the structural integrity and stability of the construction, it is crucial to properly anchor steel rebars in concrete structures. Here are the guidelines for proper anchoring: 1. Embedment length: To ensure sufficient bond strength, the rebars should be embedded in the concrete for a specific length. The required embedment length depends on factors such as rebar diameter, concrete strength, and load conditions, as specified in the design. 2. Lap length: When joining two rebars, a minimum lap length is necessary for reinforcement continuity. The lap length is determined by the rebar diameter, concrete strength, and structural design requirements. 3. Concrete cover: To safeguard the rebars from corrosion and fire, adequate concrete cover should be provided. The concrete cover is the distance between the outer surface of the rebars and the nearest concrete surface. It depends on factors like environmental conditions, fire resistance requirements, and durability considerations. 4. Spacing and arrangement: The rebars should be appropriately spaced and arranged according to the structural design requirements. The spacing is determined by the structural load and design specifications. Inadequate spacing can compromise the structural strength by providing insufficient reinforcement. 5. Proper positioning: Accurate positioning of rebars is essential, following the design drawings and specifications. They should be placed in the concrete formwork before pouring to achieve the desired structural behavior. Incorrect positioning can result in misalignment or insufficient concrete cover. 6. Mechanical anchorage: Mechanical anchorage devices such as rebar couplers, anchor bolts, or hooks can be utilized to enhance rebar anchoring in concrete structures. These devices provide additional reinforcement and prevent slippage or pull-out of the rebars under load. 7. Quality control: Regular inspection and quality control measures should be implemented to ensure compliance with the anchoring guidelines. This includes checking rebar dimensions and spacing, embedment depth, concrete cover, and ensuring proper installation techniques. It is important to note that these guidelines may vary based on project requirements, local building codes, and design specifications. Therefore, consulting a structural engineer or referring to relevant building codes and standards is essential for specific guidelines applicable to each construction project.
Q:Are there any standards or codes governing the use of steel rebars in construction?
Yes, there are several standards and codes that govern the use of steel rebars in construction. For example, the most widely recognized standard is the ASTM A615/A615M, which outlines the requirements for deformed carbon-steel bars for concrete reinforcement. Additionally, various building codes such as the International Building Code (IBC) and local building regulations often reference these standards to ensure the safe and proper use of steel rebars in construction projects.
Q:Can steel rebars be used in non-structural applications?
Yes, steel rebars can be used in non-structural applications. While rebars are primarily used to reinforce concrete structures, they can also be utilized in non-structural applications where additional strength or support is desired. These applications include garden stakes, fence posts, trellises, and other similar uses. The high tensile strength of steel rebars makes them suitable for these non-structural applications, as they can provide increased stability and durability. However, it is important to note that the sizing and specifications of rebars used for non-structural applications may differ from those used in structural applications.
Q:What are the different types of steel rebars used in road construction?
There are typically two types of steel rebars used in road construction: plain steel bars and deformed steel bars. Plain steel bars are smooth and have no ridges or deformations. Deformed steel bars, on the other hand, have ridges, protrusions, or other patterns on their surface to improve the bond strength between the rebar and the surrounding concrete. Both types of rebars are commonly used in road construction to reinforce and strengthen the concrete structures.
Q:What are the standard sizes of steel rebars?
The standard sizes of steel rebars vary depending on the country and the specific construction industry standards. However, some common standard sizes for steel rebars include diameters of 6mm, 8mm, 10mm, 12mm, 16mm, 20mm, 25mm, 32mm, and 40mm. These sizes are usually used in various construction applications, including reinforcing concrete structures.
Q:What is the effect of steel rebars on the formwork design?
Steel rebars have a significant effect on the formwork design in construction projects. These rebars, also known as reinforcement bars, are used to provide strength and stability to concrete structures. One of the main effects of steel rebars on formwork design is the need for proper positioning and spacing of the rebars within the formwork. The formwork needs to be designed to accommodate the rebars and allow for their proper placement in order to ensure the structural integrity of the concrete element. This may involve creating openings or recesses in the formwork to allow the rebars to pass through. The presence of steel rebars also affects the size and dimensions of the formwork. Since the rebars occupy space within the concrete element, the formwork needs to be adjusted accordingly to accommodate these additional materials. This may require increasing the size or thickness of the formwork to accommodate the desired concrete cover over the rebars. Another effect of steel rebars on formwork design is the consideration of the weight and load-bearing capacity of the formwork system. Steel rebars can add significant weight to the concrete structure, and the formwork needs to be designed to withstand this additional load. This may involve using stronger and more robust materials for the formwork, as well as ensuring proper bracing and support. Furthermore, the presence of steel rebars may also impact the formwork construction process. The formwork needs to be carefully designed to allow for the installation and removal of the rebars without compromising the integrity of the formwork system. This may involve incorporating removable sections or panels in the formwork design to facilitate the placement and removal of the rebars. In conclusion, steel rebars have a significant effect on the formwork design in construction projects. They require careful consideration and planning to ensure proper positioning, spacing, and support within the formwork. The presence of rebars also affects the size, dimensions, weight, and construction process of the formwork system. Overall, proper integration of steel rebars within the formwork design is crucial for the successful construction of durable and structurally sound concrete elements.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords