• Grid Tied Solar Inverter  BDE-125K System 1
  • Grid Tied Solar Inverter  BDE-125K System 2
Grid Tied Solar Inverter  BDE-125K

Grid Tied Solar Inverter BDE-125K

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description:

 

A solar micro-inverter, converts direct current (DC) electricity from a single solar panel to alternating current (AC). The electric power from several micro-inverters is combined and fed into an existing electrical grid. Micro-inverters contrast with conventional string or central inverter devices, which are connected to multiple solar panels.

 

Characteristic & Advantages:

More Energy Harvest: Distributed MPPT allows10~25% more energy harvest
Simple: Modularized,single ac cable to the house
Reliability: Longer life time and almost 100% operation hours
Security: No high Voltage, makes safter environments
Inteligent : Monitoring each module
Savings: No dc components and significantly save labor cost

Grid Tied Solar Inverter  BDE-125K

 

Datasheet: 

BDE-125K

(DC)

 (kWp)

137

 (V)

900

(A)

305

MPPT 

>99%

MPPT  (V)

450 - 820

(AC)

 (kW)

125

 (V)

380

 (V)

310-450

 (Hz)

45.5—52.5

THD

<3%  ()< p="">

 

0.92 () -- 0.92()

  

 

97.3%()

 

96.9%()

 (W)

<10< p="">

 

 

 

C  (II)

 

 

 

 

 

 

 

 

 

 

 

 

 

IP20

 

 

-35℃ -- +50℃

 

0-95% RH

 

128*64  VFD 

 

RS485, RS232, , 

 (-- mm)

800*1200*2200

 (kg)

980


 

Q:How does a solar inverter handle sudden changes in solar irradiation?
A solar inverter handles sudden changes in solar irradiation by constantly monitoring the incoming solar power and adjusting its output accordingly. It has built-in technology and algorithms that enable it to quickly adapt to changes in solar irradiation levels. The inverter can efficiently convert and regulate the fluctuating DC power from the solar panels into a stable AC power output, ensuring a smooth and consistent energy supply to the connected load or grid.
Q:Can a solar inverter be installed in a multi-storey building?
Yes, a solar inverter can be installed in a multi-storey building. The installation of a solar inverter in a multi-storey building follows the same principles as in any other building. The solar panels are typically installed on the rooftop or any other open area where they can receive maximum sunlight. The generated DC power from the solar panels is then converted into AC power by the solar inverter. In a multi-storey building, the solar inverter can be installed either on the rooftop or in a dedicated room or space on one of the floors. The installation location should be chosen based on factors such as ease of access, ventilation, and proximity to the solar panels. It is important to ensure that the inverter is installed in a safe and secure location that complies with local building codes and regulations. Additionally, the wiring and cabling required for connecting the solar panels to the inverter should be properly installed, taking into consideration the vertical distance between the panels and the inverter. Adequate protection measures should also be taken to prevent any damage or electrical hazards during the installation process. Overall, with proper planning and installation techniques, a solar inverter can be easily installed in a multi-storey building, helping to harness solar energy and reduce electricity costs for the residents or occupants.
Q:Can a solar inverter be used with different types of solar panel mounting systems?
Yes, a solar inverter can be used with different types of solar panel mounting systems. The function of a solar inverter is to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power household appliances or fed into the grid. The compatibility of the inverter with different mounting systems depends on the electrical specifications and requirements of the panels and the inverter. As long as the electrical connections and voltage requirements are met, a solar inverter can be used with various types of solar panel mounting systems such as roof-mounted, ground-mounted, or pole-mounted systems.
Q:Can a solar inverter be connected to a battery backup system?
Yes, a solar inverter can be connected to a battery backup system. This allows for the excess solar energy generated during the day to be stored in the batteries for use during times when there is less sunlight or during power outages.
Q:How does a solar inverter handle low light conditions or cloudy days?
A solar inverter handles low light conditions or cloudy days by adjusting its power output to match the available sunlight. It is designed to maximize the energy conversion efficiency even in low light situations, allowing for continuous power generation from the solar panels.
Q:Are solar inverters compatible with different solar panel technologies?
Yes, solar inverters are generally compatible with different solar panel technologies. Inverters are designed to convert the DC electricity produced by solar panels into AC electricity that can be used in homes or fed back into the grid. They are built to work with various types of solar panels, such as monocrystalline, polycrystalline, and thin-film panels. However, it is important to ensure that the inverter selected is appropriate for the specific voltage and power output of the solar panels being used.
Q:Can a solar inverter be used with a solar-powered water pumping system?
Yes, a solar inverter can be used with a solar-powered water pumping system.
Q:How do you calculate the maximum power point current for a solar inverter?
The maximum power point current for a solar inverter can be calculated by using the maximum power point tracking (MPPT) algorithm. This algorithm constantly adjusts the operating conditions of the inverter to maximize the power output from the solar panels. It does this by varying the input voltage and current to find the point at which the power output is at its highest. This maximum power point current can be determined using mathematical calculations and algorithms employed by the solar inverter.
Q:How does a solar inverter handle voltage regulation during high demand?
A solar inverter handles voltage regulation during high demand by adjusting the power output from the solar panels to match the required load. It constantly monitors the voltage and current levels and adjusts its operation accordingly to ensure a stable and regulated output voltage. This is achieved through various control mechanisms, such as maximum power point tracking and voltage regulation algorithms, allowing the inverter to efficiently manage and distribute power during periods of high demand.
Q:Can a solar inverter be used in a solar-powered irrigation system?
Yes, a solar inverter can be used in a solar-powered irrigation system. A solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various appliances and systems. In the case of a solar-powered irrigation system, the AC power produced by the solar inverter can be used to operate pumps, valves, and other components necessary for irrigation.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords