• FC Content 90%-95% Calcined Anthracite System 1
  • FC Content 90%-95% Calcined Anthracite System 2
  • FC Content 90%-95% Calcined Anthracite System 3
FC Content 90%-95% Calcined Anthracite

FC Content 90%-95% Calcined Anthracite

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

FC Content 90%-95% Calcined Anthracite

 

Product Description:

 

After many years' research and according to customers' use experience, FSK Carbon additive has gained the features of high carbon, low sulfur, low nitrogen and less impurities. FSK carbon additive can be used in the steel casting to promote the steel quality in steel-melting, now this product is widely used in foundry plants, brake pads and rub material produce scopes .

 

 

Specification as follows:

 

 Calcined Anthracite/Carbon Additive for Iron Casting &Steelmaking

 

Above grain size is our standard recommendation, if you have any special requirement, pls contact with duratight freely.

  

1/for normal steel,we recommend DT-CA-10 for you, Fixed carbon(max):95%,sulfur(max):0.3%

 

2/ for low Nitrogen steel, Steel cord ,high strength wire-steel,we recommend DT-CA-06, DT-CA-07,DT-CA-08,DT-CA-09.

  

Packing and delivery details:

  

1.Waterproof ton bags(without small bags inside )

 

2.20kgs/25kgs paper bags, 40 bags on one pallet or in one MT-bag

 

3.20kgs/25kgs/30kgs waterproof PP Woven bags ,990kgs on one pallet or in one MT-bag

  

Above packing is our standard packing, if you have special requirement about the packing, pls contact with us freely.

 

Pictures:

FC 90%-95% Calcined AnthraciteFC 90%-95% Calcined Anthracite

FC 90%-95% Calcined AnthraciteFC 90%-95% Calcined Anthracite





Q:How does carbon affect the formation of ground-level ozone?
Carbon does not directly affect the formation of ground-level ozone. Ground-level ozone is primarily formed through a complex chemical reaction involving oxides of nitrogen (NOx), volatile organic compounds (VOCs), sunlight, and heat. However, carbon-based compounds, such as hydrocarbons, can indirectly impact the formation of ground-level ozone. When carbon-based compounds, like hydrocarbons, are emitted into the atmosphere from sources such as vehicles, industrial processes, and fossil fuel combustion, they can react with nitrogen oxides in the presence of sunlight to form ozone. This reaction occurs in the presence of volatile organic compounds (VOCs) and nitrogen oxides (NOx), which are the primary precursors of ground-level ozone. Elevated levels of carbon-based compounds, particularly in the presence of NOx and sunlight, can enhance the formation of ground-level ozone. This is because the carbon-based compounds act as catalysts, accelerating the chemical reactions that lead to ozone formation. Additionally, the combustion of carbon-based fuels, such as gasoline and diesel, releases nitrogen oxides into the atmosphere, which can further contribute to the formation of ground-level ozone. It is important to note that carbon-based compounds alone do not directly cause ground-level ozone pollution. Rather, they contribute to the formation of ground-level ozone when combined with other pollutants, such as nitrogen oxides and sunlight. To mitigate the formation of ground-level ozone, it is necessary to reduce emissions of carbon-based compounds, as well as other ozone precursors like nitrogen oxides and volatile organic compounds.
Q:How is carbon used in the production of adhesives?
Carbon is used in the production of adhesives as a key component in creating the adhesive's base material. Carbon-based compounds, such as resins or polymers, are often used to form the adhesive's structure, providing strength, flexibility, and adhesion properties. These carbon-based materials can be synthesized or derived from natural sources like petroleum or plants. Overall, carbon plays a crucial role in the formulation of adhesives, enabling them to bond various materials together effectively.
Q:What are carbon nanotubes?
Carbon nanotubes are cylindrical structures made of carbon atoms arranged in a unique hexagonal lattice, resembling rolled-up sheets of graphene. These nanomaterials possess exceptional strength, high electrical and thermal conductivity, and various other unique properties that make them promising for a wide range of applications in fields such as electronics, materials science, and medicine.
Q:What are the consequences of increased carbon emissions on human migration patterns?
Increased carbon emissions can have significant consequences on human migration patterns. One major consequence is the displacement of populations due to the impacts of climate change, such as rising sea levels, extreme weather events, and loss of agricultural productivity. This can lead to forced migration, as people seek safer and more habitable areas. Additionally, the impacts of climate change can exacerbate existing social, economic, and political tensions, potentially leading to conflict and further displacement. Furthermore, the strain on resources and infrastructure caused by increased carbon emissions can also contribute to migration, as communities may struggle to meet basic needs. Overall, increased carbon emissions can disrupt human migration patterns and create complex challenges for individuals, communities, and governments worldwide.
Q:What is the structure of graphite, another form of carbon?
Graphite has a layered structure where carbon atoms are arranged in hexagonal rings, forming sheets of interconnected hexagons. These sheets are stacked on top of each other, with weak forces of attraction between them, resulting in a slippery and flaky structure.
Q:How do human activities contribute to carbon emissions?
Human activities contribute to carbon emissions in various ways. One major source is the burning of fossil fuels such as coal, oil, and natural gas for transportation, electricity generation, and industrial processes. Deforestation and land-use changes, mainly for agriculture and urbanization, also release significant amounts of carbon dioxide into the atmosphere. Additionally, industrial processes, including cement production and chemical manufacturing, release greenhouse gases. Overall, our reliance on fossil fuels and unsustainable land management practices are the primary drivers of human-induced carbon emissions.
Q:What is carbon nanomembrane?
A carbon nanomembrane (CNM) is a thin layer of carbon atoms arranged in a lattice structure, with a thickness of just one atom, making it one of the thinnest materials known. To create CNMs, a precursor material is deposited onto a substrate and then transformed into a pure carbon layer through heat or chemical processes. The unique properties of carbon nanomembranes have generated significant interest in science and technology fields. CNMs are highly impermeable to gases and liquids, making them ideal for applications like gas separation and filtration. They also possess excellent electrical conductivity, making them suitable for electronic devices and sensors. Moreover, carbon nanomembranes can be tailored with specific pore sizes and chemical functionalities, enabling their use in molecular sieving and biological applications. They have shown potential in drug delivery, water purification, and tissue engineering. Additionally, CNMs exhibit impressive mechanical strength and flexibility, providing opportunities for use in lightweight and flexible electronics. In conclusion, carbon nanomembranes offer a versatile and exciting platform for various applications. Ongoing research and development in this field aim to further explore and utilize the unique properties of CNMs to advance different industries.
Q:What are the effects of carbon dioxide on ocean acidity?
Ocean acidity is significantly impacted by carbon dioxide (CO2), resulting in a phenomenon known as ocean acidification. When humans release CO2 into the atmosphere through activities like burning fossil fuels, the oceans absorb it. This absorption triggers chemical reactions that form carbonic acid, which lowers the pH of seawater. The increased concentration of carbonic acid in the oceans disrupts the delicate balance of carbonate ions, which are necessary for the formation of calcium carbonate. Numerous marine organisms, including coral reefs, shellfish, and plankton, rely on calcium carbonate to construct their shells and skeletons. As the ocean becomes more acidic, the concentration of carbonate ions decreases, making it increasingly challenging for these organisms to create and maintain their protective structures. Ocean acidification poses a significant threat to marine ecosystems and biodiversity. Coral reefs, for example, are particularly vulnerable to acidification. As acidity increases, corals struggle to build and maintain their calcium carbonate structures, resulting in bleaching and eventual death of the reefs. The loss of coral reefs has severe consequences for the countless species that depend on them for food, shelter, and reproduction. Additionally, other marine organisms such as shellfish and plankton are also affected by ocean acidification. Shellfish, including oysters, clams, and mussels, rely on calcium carbonate for their shells. As acidity rises, the availability of carbonate ions decreases, making it harder for these organisms to construct their protective shells. This can lead to reduced populations of shellfish, impacting not only the organisms themselves but also the industries and communities that rely on them economically and culturally. Plankton, the foundation of the marine food web, are also susceptible to the effects of increased ocean acidity. Many plankton species possess calcium carbonate structures that provide buoyancy and protection. As acidity rises, these structures weaken, making it more difficult for plankton to survive and reproduce. This disruption in the plankton community can have far-reaching consequences for the entire marine food chain, impacting fish, marine mammals, and ultimately, humans who rely on seafood as a primary source of protein. In conclusion, the impact of carbon dioxide on ocean acidity is significant and concerning. Ocean acidification jeopardizes the health and stability of marine ecosystems, affecting crucial organisms like coral reefs, shellfish, and plankton. Understanding and addressing this issue are crucial for the long-term health of our oceans and the countless species that depend on them.
Q:What is carbon neutral manufacturing?
Manufacturing goods while minimizing or offsetting carbon emissions is what carbon neutral manufacturing is all about. The goal is to reduce greenhouse gas emissions at every stage of the manufacturing process, from obtaining raw materials to disposing of finished products. Achieving this involves various measures, such as improving energy efficiency, utilizing renewable energy sources, implementing sustainable practices, and investing in carbon offset projects. To become carbon neutral, manufacturers typically start by conducting a comprehensive assessment of their carbon footprint. This involves identifying and quantifying all emissions generated in their operations, including both direct emissions from manufacturing processes and indirect emissions from energy sources. Once emissions are measured, manufacturers can devise strategies to decrease their carbon footprint. Common methods for achieving carbon neutrality in manufacturing include optimizing energy consumption through efficient equipment and technologies, adopting renewable energy sources like solar or wind power, and implementing waste reduction and recycling programs. Additionally, manufacturers can invest in carbon offset projects that aim to reduce or eliminate greenhouse gas emissions, such as reforestation or renewable energy initiatives. By implementing these measures and offsetting any remaining emissions, manufacturers can achieve carbon neutrality. This not only helps combat climate change by reducing overall carbon footprints but also demonstrates a commitment to sustainability and environmental responsibility. Carbon neutral manufacturing is an important step towards transitioning to a low-carbon economy and creating a more sustainable future.
Q:What are the consequences of increased carbon emissions on coral reefs?
Increased carbon emissions have severe consequences on coral reefs. One of the major impacts is ocean acidification, which occurs when excess carbon dioxide is absorbed by seawater, leading to a decrease in pH levels. This acidification inhibits the ability of corals to build their calcium carbonate skeletons, making them more vulnerable to erosion and breaking. Additionally, higher levels of carbon dioxide in the atmosphere contribute to global warming, resulting in rising ocean temperatures. This leads to coral bleaching, a phenomenon in which corals expel the symbiotic algae that give them their vibrant colors. Without these algae, corals become stressed, lose their color, and are more susceptible to disease and death. Furthermore, increased carbon emissions contribute to changes in ocean currents and weather patterns, leading to more frequent and intense storms. These storms can physically damage coral reefs, causing further destruction to already vulnerable ecosystems. The consequences of increased carbon emissions on coral reefs are far-reaching and devastating. The decline of coral reefs not only affects the biodiversity of the oceans but also has significant implications for human populations that depend on reefs for food, income, coastal protection, and tourism. It is crucial to reduce carbon emissions and take immediate action to protect and preserve these invaluable ecosystems.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products