Environment-Friendly Plasticizer DEDB 99%

Ref Price:
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
16.8
Supply Capability:
8000 m.t./month

OKorder Service Pledge

Quality Product

Order On-line Tracking

Timely Delivery

OKorder Service Pledge

Credit Rating

Credit Services

Credit Purchasing

Share to:

Product Description:

Product performance:

     Polyol Benzoate (DEDB) is colorless or pale yellow transparent oily liquid, water-insoluble, soluble in aromatic hydrocarbons, ketones and ethers, and has good compatibility withpolyvinyl chloride, ethylene - vinyl acetate copolymer, poly vinyl acetate, polymethylmethacrylate, polyvinylbutyral, nitrocellulose, and ethyl cellulose, etc.

Product application:

       Polyol Benzoate(DEDB) is an environmentally friendly plasticizer with the characteristics of strong solubility, good compatibility, low volatility,resistant to oil, water, light, pollution etc. It is suitable for processing PVC flooring material, plastisol, artificial leather, cable material, soft and hard pipe, shoes material, rubber strips, synthetic rubber, and paint, printing ink, etc. It has a better plasticized effect if it is used together withDOP or DBP, and has greatly achieved the purpose of reducing cost .

Product quality index

Item

First grade

Second grade

Chroma(APHA)                    

50

60

Ester %                           

99.5

90.0

Density(20°C)g/ 

1.120-1.126

1.172-1.78

Acidity(as benzene dicarbonic acid) %   

0.01

0.02

Flash Point °C                     

195

192

Loss on heat(125°C,2 hours)%         ≤

0.3

0.5

Chroma after heat treatment

80

100

Specifications

1. Direct producer with 15 years experience 
2. ISO9001:2000 
3. High quality, lower price and best service 
4. New plasticizer 

PackagingIBM, net weight: 1000 kg.

Our Factory:


Send a message to us:

Remaining: 4000 characters

- Self introduction

- Required specifications

- Inquire about price/MOQ

Q:The role of catalyst in chemical reactions
The role of the catalyst is to change the reaction required to achieve the activation energy, can reduce the activation energy is called positive catalyst (that is, usually the meaning of the catalyst), to improve the activation energy is negative catalyst
Q:What is the difference between an enzyme catalyst in a living body and a catalyst in chemistry?
enzyme susceptibility inactivation Chemical catalyst under certain conditions, due to poisoning and loss of catalytic capacity; and enzyme than the chemical catalyst is more fragile, more volatile activity. Any factor that makes the protein degenerate (to strengthen the acid, alkali, high temperature, etc.), can make the enzyme completely lost activity.
Q:What chemical reactions can water do the catalyst?
So far heard, but can and Na and other metal reaction
Q:Will the chemical catalyst not reduce that?
Why is it done? Although the catalyst does not react chemically, the catalyst itself is deteriorated and is not always used
Q:what is a fuel catalyst?
Fuel Catalyst
Q:What is the meaning of catalyst in chemistry?
In the chemical reaction can change the reaction rate of chemical reaction (increase or decrease) without changing the chemical balance, and its own quality and chemical properties in the chemical reaction before and after the material did not change the catalyst.
Q:The chemical equation of heating reaction of benzene and hydrogen under the action of catalyst
C6H6 benzene + 3H2 - (arrow) C6H12 cyclohexane (Ni catalytic heating)
Q:describe a biological catalyst?
Enzyme are biological catalyst, proteinous in nature, formed in animal's body by exocrine cell, present in inactive form, generally ends with suffix ase e.g enterikinase with exceptions pepsin, specific in nature not only speed up biological reactions but also lower down the reactions inside the body.
Q:Chemical catalyst in several ways
In general, positive catalyst (accelerated rate) and negative catalyst (slowing down)
Q:Name one case in which catalyst poisoning is useful?
Usually, catalyst poisoning is undesirable as it leads to a loss of usefulness of expensive noble metals or their complexes. However, poisoning of catalysts can be used to improve selectivities of reactions. In the classical Rosenmund reduction of acyl chlorides to aldehydes, the palladium catalyst (over barium sulfate or calcium carbonate) is poisoned by the addition of sulfur or quinoline. This system reduces triple bonds faster than double bonds allowing for an especially selective reduction. Lindlar's catalyst is another example — palladium poisoned with lead salts. As described by its inventor,[1][2] the catalyst is prepared by reduction of palladium chloride in a slurry of calcium carbonate followed by adding lead acetate. By this approach, one obtains a catalyst with a large surface area. Further deactivation of the catalyst with quinoline enhances its selectivity, preventing formation of alkanes. An example of alkyne reduction is the reduction of phenylacetylene to styrene.[1] en.wikipedia.org/wiki/Lindlar%27s...

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range