• Deformed Bars With Material Grade HRB400/500 System 1
  • Deformed Bars With Material Grade HRB400/500 System 2
  • Deformed Bars With Material Grade HRB400/500 System 3
Deformed Bars With Material Grade HRB400/500

Deformed Bars With Material Grade HRB400/500

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t
Supply Capability:
20000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Standard:
ASTM,GB
Technique:
Hot Rolled
Shape:
Round
Surface Treatment:
Black
Steel Grade:
HRB400
Thickness:
6mm-32mm
Length:
12m/pc
Net Weight:
2mt/bundle

OKorder is offering Deformed Steel Bar with high quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

Note:

1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.

2. Other Grade and Standard Deformed Steel Bar we can supply:

   Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S

   Standard: ASTM, BS, DIN

3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.

4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship.

 

Product Applications:

Deformed Steel Bar with high quality are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Deformed Steel Bar with high quality are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

 

Product Specifications:

Standard

GB

HRB400


Diameter

10mm-32mm



Length

6M, 12M


Place of origin

Hebei, China mainland


Advantages

exact size, regular package, chemical and   mechanical properties are stable.


Type

Hot rolled deformed steel bar


Chemical Composition:

Grade

Technical data of the original chemical composition (%) 

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered by OKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do you guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: What is the normal tolerance of your steel products ?

A3: Normally 1%-3%, but we can also produce the goods according to the customers' requests

Q4:What's your payment terms ?

A4:Mostly,we collect the money by T/T and LC at sight . We also accept time LC at 90/120 days sight.


Image:

Deformed Bars With Material Grade HRB400/500

Deformed Bars With Material Grade HRB400/500



Q:What is the process of straightening steel rebars?
The process of straightening steel rebars involves several steps to ensure the rebars are properly aligned and free from any bends or deformities. Firstly, the rebars are carefully inspected for any visible defects such as twists, kinks, or bends. This initial inspection is important to determine the extent of straightening required and whether any rebars need to be replaced. Once the inspection is complete, the rebars are loaded onto a straightening machine. This machine consists of rotating rollers or hydraulic pressure devices that apply force to the rebars to straighten them. The rebars are fed through the rollers or placed between the hydraulic devices, and pressure is applied gradually to reshape the bars and remove any bends or twists. During the straightening process, it is crucial to maintain control over the applied force to prevent over-straightening or causing any further damage to the rebars. Skilled operators monitor the machine and adjust the pressure accordingly to ensure the rebars are straightened accurately. After the rebars have been straightened, they undergo a final inspection to verify that they meet the required specifications. This inspection includes checking for any remaining deformities, ensuring the rebars are of the correct length, and confirming that they are straight within acceptable tolerances. It is important to note that the straightening process can vary depending on the type and size of the rebars. Different machines and techniques may be used for larger or more complex rebars. Additionally, the process may involve heating the rebars prior to straightening to make them more malleable. Overall, the process of straightening steel rebars involves careful inspection, the use of specialized machinery, skilled operators, and a final inspection to ensure the rebars are straight, aligned, and ready for use in various construction projects.
Q:How do steel rebars resist alkali-silica reaction in concrete?
Steel rebars resist alkali-silica reaction in concrete primarily due to their passive film and the alkaline environment of the concrete. When steel rebars are embedded in concrete, they form a passive film on their surface. This film acts as a protective layer that prevents direct contact between the steel and the aggressive alkali-silica reactive aggregates present in the concrete. This passive film is formed due to the high pH of the alkaline environment created by the cement in the concrete, which typically ranges between pH 12-13. This high pH helps in creating a protective oxide layer on the surface of the steel rebar, preventing it from coming into contact with the reactive elements in the aggregates. Furthermore, the alkaline environment of the concrete helps in maintaining the passivity of the steel rebars. The alkalinity of the concrete allows the passive film to remain stable and intact, providing a continuous barrier against the alkali-silica reaction. As long as the pH of the concrete remains high, the steel rebars will continue to resist the reaction. It is worth noting that the thickness and quality of the passive film on the steel rebars are crucial in ensuring their resistance to alkali-silica reaction. Any factors that can compromise the integrity of this film, such as carbonation or chloride contamination, may increase the risk of the reaction occurring. In summary, steel rebars resist alkali-silica reaction in concrete due to the presence of a passive film on their surface, which is formed by the alkaline environment of the concrete. This film acts as a protective barrier, preventing the steel from coming into direct contact with the reactive aggregates and thus, mitigating the likelihood of the reaction occurring.
Q:How is steel rebar manufactured?
Steel rebar is manufactured through a process called hot rolling, where steel billets are heated and passed through a series of rollers to shape them into the desired rebar size and form. This process involves various stages such as heating, roughing, finishing, and cooling, resulting in the production of high-quality steel rebar used in construction projects.
Q:Are there any disadvantages of using steel rebars?
Yes, there are a few disadvantages of using steel rebars. Firstly, steel rebars are susceptible to corrosion when exposed to moisture and certain chemicals, which can weaken the structure over time. Additionally, steel rebars are relatively heavy, making them challenging to transport and handle on construction sites. Lastly, steel rebars can be more expensive compared to alternative materials, which could increase the overall cost of a construction project.
Q:How do steel rebars impact the overall flexibility of a structure?
Steel rebars impact the overall flexibility of a structure by providing reinforcement and increasing its strength. The addition of steel rebars enhances the structural integrity, allowing the structure to withstand external forces and stresses without deformation or failure, thus improving its overall flexibility and durability.
Q:Do steel rebars have any specific markings or codes?
Yes, steel rebars typically have specific markings or codes to indicate their size, type, and grade. These markings are essential for identifying and ensuring the correct usage of rebars in construction projects.
Q:Can steel rebars be used in structures with high resistance to earthquakes?
Structures with high resistance to earthquakes can make use of steel rebars. These rebars are commonly incorporated in reinforced concrete structures to enhance strength and durability. In areas prone to earthquakes, it is crucial to design and construct buildings capable of withstanding seismic forces. Properly incorporating steel rebars into the structural design can contribute to improving the overall seismic performance of a building. In earthquake-resistant structures, steel rebars offer several advantages. Firstly, they increase the tensile strength of concrete, which is typically weak in tension. This reinforcement helps prevent cracking and failure of the concrete during seismic events. Additionally, steel rebars improve the ductility of the structure, allowing it to absorb and dissipate energy during earthquakes. This ductile behavior helps minimize structural damage and ensures the building remains stable and safe. Moreover, steel rebars can be combined with other seismic design techniques to enhance the overall performance of the structure. For instance, they can be used in conjunction with specialized concrete mixes like high-strength or fiber-reinforced concrete to further improve seismic resistance. Advanced structural systems such as moment frames or shear walls can also be integrated with steel rebars to provide even greater earthquake resistance. However, it is important to note that the earthquake resistance of a structure does not solely depend on the use of steel rebars. Proper design, construction techniques, and adherence to seismic building codes are equally crucial factors. Engineers must consider various aspects, including the building's location, soil conditions, and anticipated seismic loads, to ensure the structural integrity and safety of the building. In conclusion, steel rebars can effectively enhance the earthquake resistance of structures. By incorporating them into reinforced concrete structures, the tensile strength and ductility are improved, enabling the building to withstand seismic forces. Nevertheless, it is essential to implement comprehensive seismic design strategies and adhere to building codes to ensure the overall safety and performance of the structure.
Q:Can steel rebars be bent on site?
Yes, steel rebars can be bent on site.
Q:What is the purpose of using stirrups with steel rebars?
The purpose of using stirrups with steel rebars is to provide additional support and reinforcement to the concrete structure. Stirrups are small, U-shaped bars that are placed around the main steel rebars in a concrete beam or column. They help to prevent the rebars from buckling or bending under pressure by holding them in place and distributing the load evenly throughout the structure. This increases the overall strength and durability of the concrete element, ensuring its ability to withstand various forces and loads.
Q:How do steel rebars resist abrasion in concrete structures?
Steel rebars resist abrasion in concrete structures due to their high tensile strength and durability. When embedded within the concrete, the rebars act as reinforcement, providing additional strength to the structure. During the setting and hardening process of concrete, rebars are firmly embedded within the mixture, creating a strong bond. This bond ensures that the rebars remain securely in place, even when subjected to external forces such as abrasion. The surface of steel rebars is typically treated to enhance their resistance to abrasion. This can include processes such as hot-dip galvanizing or epoxy coating. These surface treatments create a protective layer that shields the rebars from the abrasive effects of the surrounding concrete and other external factors. Furthermore, steel rebars are designed with ridges or deformations along their surface. These ridges increase the surface area of the rebars, promoting a stronger bond with the concrete. This increased bond helps to distribute external forces, such as abrasion, more evenly throughout the structure, reducing the risk of localized damage. In summary, the high tensile strength, durability, and surface treatments of steel rebars, along with their ability to form a strong bond with concrete, enable them to resist abrasion in concrete structures.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords