• Continue Casting Steel Bloom  by Blasting Furnace System 1
  • Continue Casting Steel Bloom  by Blasting Furnace System 2
Continue Casting Steel Bloom  by Blasting Furnace

Continue Casting Steel Bloom by Blasting Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 Continue Casting Steel Bloom Manufactured  by Blasting Furnace

 

1.Structure of  Continue Casting Steel Bloom Manufactured  by Blasting Furnace

 

Steel ingot by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill.Billet section of square, round, flat, rectangular and abnormity, etcSeveral, mainly related to shape of rolled products.Simple rolled section steel, choose close to finished product cross section of square billet or rectangular billet.rollingThe sector products such as flat steel, Angle steel, select the rectangular billet or slab.Had better profiled billet when production beams, channels, and in rolling processLines and improve the yield.The raw material of round billet is the production of seamless tube.See billet production billet production methods. is the raw material of all kinds of steel mill.Billet section of square, round, flat, rectangular and abnormity, etcSeveral, mainly related to shape of rolled products.Simple rolled section steel, choose close to finished product cross section of square billet or rectangular billet.rollingThe sector products such as flat steel, Angle steel, select the rectangular billet or slab.Had better profiled billet when production beams, channels, and in rolling processLines and improve the yield.The raw material of round billet is the production of seamless tube.See billet production billet production methods.


2.Main Features of  Continue Casting Steel Bloom Manufactured  by Blasting Furnace.

Continue Casting Steel Bloom Manufactured  by Blasting Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

 

3.  Continue Casting Steel Bloom Manufactured  by Blasting Furnace Images

 

 

Continue Casting Steel Bloom  by Blasting Furnace

Continue Casting Steel Bloom  by Blasting Furnace

 

 

 

 

4.  Continue Casting Steel Bloom Manufactured  by Blasting Furnace Specification

 1)SIZE

2)MATERIAL GRADE

3)CHEMICAL ELEMENTS COMPOSITONS

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 The classification of the billet Mainly from the shape is divided into two kinds: Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod.

5.FAQ of  Continue Casting Steel Bloom Manufactured  by Blasting Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①What kinds of the spec. of steel billet suitable to produce the section steel?

It is shade blank steel billet is better.

 

②Could we check the process of the producing in the steel mill?

Sure, but you must follow the instruction of the steel mills during the visiting. For safety consideration.

 

③How many days we should order before producing?

It depands on the detail order and situation of the steel mill, usually it is earlier, it is better.

 

Q:Can steel billets be used in the production of appliances?
Yes, steel billets can be used in the production of appliances. Steel billets are semi-finished products that are typically used for further processing into various shapes and sizes. In the case of appliances, steel billets can be used as the raw material for manufacturing components such as frames, panels, and other structural parts. Steel is a versatile and durable material that offers strength, stability, and resistance to corrosion, making it suitable for use in appliances that require robust construction. Additionally, steel can be easily molded and shaped to meet the specific design requirements of different appliances, making it a preferred choice in the manufacturing process.
Q:What is the role of steel billets in the construction of railway stations?
Steel billets are essential in constructing railway stations, serving as semi-finished steel products that are typically rectangular or square in shape. They function as raw materials for various construction purposes. Within the realm of railway stations, steel billets are primarily utilized to fabricate structural components like beams, columns, and trusses. These components provide the necessary strength and stability to support the weight of the station building, platforms, and any associated structures. A key advantage of employing steel billets in railway station construction lies in their high strength-to-weight ratio. Steel is widely recognized for its exceptional strength, making it an ideal material for supporting heavy loads. By incorporating steel billets, engineers can design and construct railway stations capable of enduring the constant traffic and heavy footfall characteristic of these public spaces. Furthermore, steel billets offer exceptional durability, corrosion resistance, and fire resistance, all of which are vital factors in ensuring the long-term safety and structural integrity of railway stations. These properties establish steel billets as a reliable and cost-effective choice for construction projects prioritizing safety and longevity. Moreover, steel billets can be easily shaped and fabricated into various sizes and dimensions, allowing for flexibility in design and construction. This versatility enables architects and engineers to create aesthetically appealing and functional railway station structures tailored to the specific project requirements. In summary, steel billets play a crucial role in railway station construction by providing the necessary strength, durability, and versatility required for the structural components supporting these vital transportation hubs. By utilizing steel billets, railway station construction projects can be completed efficiently, guaranteeing the safety and comfort of passengers for years to come.
Q:What are the different types of steel billet rolling processes?
There are several types of steel billet rolling processes, including hot rolling, cold rolling, and warm rolling. Hot rolling involves heating the billet to a high temperature and then passing it through a series of rollers to shape it into the desired form. Cold rolling, on the other hand, is performed at room temperature and involves passing the billet through rollers to achieve a desired thickness or shape. Warm rolling is a combination of hot and cold rolling, where the billet is heated to a lower temperature compared to hot rolling but higher than room temperature. Each of these processes has its own advantages and is used for different applications in the steel industry.
Q:Can steel billets be used for making musical instruments?
Yes, steel billets can be used for making musical instruments. While traditional musical instruments are often made from materials such as wood or brass, steel can also be used to create unique and modern instruments. Steel's strength and durability make it ideal for certain instruments, such as steel drums or steel guitars. Additionally, steel's versatility allows for the creation of intricate designs and shapes that can produce a wide range of sounds. However, it is important to note that the specific characteristics and properties of the steel used, such as its composition and thickness, will greatly impact the sound and quality of the instrument. Therefore, careful consideration and experimentation may be required to achieve the desired musical tones and effects when using steel billets for instrument making.
Q:What are the different surface defects in steel billets?
Steel billets can have various types of surface defects, which can occur during manufacturing or due to handling and transportation. Some common defects include scale, cracks, lamination, pitting, slivers, rolled-in scale, and surface scratches. Scale forms as a rough, flaky coating during heating and rolling, affecting the billet's appearance. Cracks can be caused by improper cooling, excessive pressure, or stress during handling, compromising the billet's strength. Lamination defects occur when non-metallic layers weaken the billet. Pitting is the formation of small cavities due to corrosion or exposure to corrosive environments. Slivers are thin, protruding pieces caused by improper cutting or shearing. Rolled-in scale refers to embedded scale, requiring additional cleaning. Surface scratches are shallow marks that can affect aesthetics and may need further treatment. Proper identification, handling, and treatment of these defects are essential to ensure the quality of the steel billets. Regular inspection and appropriate techniques can minimize defects and enhance the billets' overall quality.
Q:What are the causes of internal cracks in continuous casting billet?
A French Research Institute of carbon, sulfur and phosphorus influence on continuous casting billet hot cracking, a total of three test groups of carbon manganese steel, carbon, sulfur and phosphorus content of each sample is different.
Q:What does the billet of the steel plant refer to?
The steel billet is the continuous casting machine by smelting steel plant casting into the blank, in the middle of products before entering the rolling process, the section size will be decided by rolling steel.
Q:Can steel billets be forged into complex shapes?
Yes, steel billets can be forged into complex shapes. The forging process involves heating the steel billet to a specific temperature, typically above its recrystallization temperature, and then applying pressure to shape it into the desired form. This can be done using various forging techniques such as open die forging, closed die forging, or impression die forging. Steel is a highly malleable material, which means it can be easily shaped and deformed under heat and pressure. This property allows steel billets to be forged into intricate and complex shapes, including gears, turbine blades, automotive parts, and many other components used in various industries. The forging process not only shapes the steel billet but also improves its mechanical properties, making it stronger and more durable. Additionally, the forged steel has a refined grain structure, which enhances its toughness and resistance to fatigue and cracking. However, forging complex shapes from steel billets requires skilled craftsmanship and specialized equipment. The process may involve multiple steps, including pre-forming, rough forging, and finish forging, to achieve the desired shape and dimensions. Computer-aided design (CAD) and computer-aided manufacturing (CAM) technologies are often used to optimize the forging process and ensure accurate and precise results. In conclusion, steel billets can indeed be forged into complex shapes. The forging process harnesses the malleability of steel and transforms it into intricate components with improved mechanical properties.
Q:How are steel billets used in the production of wind turbine components?
Steel billets are an essential raw material used in the production of wind turbine components. These billets are large, semi-finished blocks of steel that serve as the starting point for various manufacturing processes. One of the primary applications of steel billets in wind turbine production is for the fabrication of tower sections. The tower is a crucial component that supports the entire turbine structure, and it needs to withstand strong winds and other environmental conditions. Steel billets are first heated and then rolled or forged into the desired shape and size to create the tower sections. These sections are then welded together to form the complete tower structure. Additionally, steel billets are also used for manufacturing other wind turbine components such as the hub, nacelle, and main shaft. The hub is the central part of the turbine that holds the rotor blades, while the nacelle houses the generator and other critical components. Both these parts require high-strength steel, which can be obtained by processing steel billets. Similarly, the main shaft, which connects the rotor hub to the gearbox, needs to be extremely durable and able to withstand the torque generated by the blades. The choice of using steel billets in wind turbine production is driven by the material's exceptional mechanical properties. Steel exhibits high strength, allowing the turbine components to withstand the extreme forces they experience during operation. Moreover, steel also possesses excellent fatigue resistance, which is crucial considering the continuous rotation and cyclic loading of wind turbines. Overall, steel billets play a vital role in the production of wind turbine components, ensuring the structural integrity and reliability of these renewable energy systems. By using steel billets, manufacturers can fabricate strong and durable components that contribute to the efficient and sustainable generation of wind power.
Q:How are steel billets cut into smaller pieces?
Steel billets are typically cut into smaller pieces using a process called sawing or shearing. This involves using specialized machinery equipped with blades or shear tools to slice the billets into desired lengths or sizes.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords