• Continue Casting Steel Bloom by Blast Furnace Q235 System 1
  • Continue Casting Steel Bloom by Blast Furnace Q235 System 2
Continue Casting Steel Bloom by Blast Furnace Q235

Continue Casting Steel Bloom by Blast Furnace Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Continue Casting Steel Bloom by Blast Furnace Q235

 

1.Structure of  Continue Casting Steel Bloom by Blast Furnace Q235

 

Continue Casting Steel Bloom by Blast Furnace Q235 the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of  Continue Casting Steel Bloom by Blast Furnace Q235

Continue Casting Steel Bloom by Blast Furnace Q235section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

 

3.  Continue Casting Steel Bloom by Blast Furnace Q235 Images

 

 

 

Continue Casting Steel Bloom by Blast Furnace Q235

Continue Casting Steel Bloom by Blast Furnace Q235

 

 

 

 

4.  Continue Casting Steel Bloom by Blast Furnace Q235 Specification

 Continue Casting Steel Bloom by Blast Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

Q235A: C:0.14-0.22%, Mn: 0.3-0.65%, Si: max 0.3%, S:MAX 0.045% P:MAX 0.045%

Q235B: C:0.12-0.2%, Mn: 0.3-0.7%, Si: max 0.3%, S:MAX 0.045% P:MAX 0.045%

Q235C: C:MAX 0.18%, Mn: 0.35-0.8%, Si: max 0.3%, S:MAX 0.04% P:MAX 0.045%

Q235D: C:MAX 0.17%, Mn: 0.35-0.8%, Si: max 0.3%, S:MAX 0.035% P:MAX 0.035%

For diffirent usage, can add some other chemical compositions.

 

5.FAQ of  Continue Casting Steel Bloom by Blast Furnace Q235

 

We have organized several common questions for our clients,may help you sincerely: 

 

①How to make the contract for the long term business?

Because the steel billet price is changing according to the market price changing every day, so we could't make a long term business contract with our customer.

 

②How to guarantee the quality of the products?

We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

And you can employ the third party inspecting company to check and get the report from them dirrectly or you can pay and then we can arrange for you before loading.And if you have any feedback about the quality you can tell us in the first time.

 

③Except the Q235, are there any other grades we can order?

Yes, there are, you can choose and then we do that for you, for example Q195/215/275 or you can give us the chemical composition and then we make for you.

  

 

Q:Can steel billets be used in the automotive industry?
Yes, steel billets can be used in the automotive industry. They are commonly used as raw materials for manufacturing various automotive components such as engine blocks, transmission gears, axles, and suspension parts. The high strength and durability of steel make it an ideal choice for ensuring the safety and performance of vehicles.
Q:How are steel billets used in the manufacturing of bars and rods?
Bars and rods are manufactured using steel billets, which are an essential part of the process. These billets have a cylindrical shape and act as the starting point for producing different types of bars and rods. To begin, steel billets are commonly created through continuous casting. This method involves pouring molten steel into a mold, which then solidifies and forms a billet. To enhance their workability and reduce the risk of cracking during subsequent processes, the billets are usually heated to a specific temperature. After the preparation of the billets, they are sent to rolling mills where they undergo intense pressure and high temperatures. This process, known as hot rolling, gradually shapes the billet into the desired form by passing it through a series of rollers. Depending on the specific requirements of the bar or rod being produced, the rolling mills can be equipped with different types of rolls, such as flat rolls or grooved rolls. During hot rolling, the billet is elongated and reduced in cross-sectional area, resulting in a longer and thinner product. This transformation enables the production of bars and rods with consistent dimensions and improved mechanical properties. Moreover, the hot rolling process refines the grain structure of the steel, thereby enhancing its strength and toughness. Following hot rolling, the bars or rods may undergo additional processes to achieve specific characteristics. These processes may include quenching and tempering, which optimize the mechanical properties of the final product, such as hardness and ductility. In conclusion, steel billets are crucial in the manufacturing of bars and rods. They are transformed through the hot rolling process to achieve the desired shape, dimensions, and mechanical properties. The versatility of steel billets allows for the production of a wide range of bars and rods used in various industries, including construction, automotive, and manufacturing.
Q:What are the potential applications of steel billets in the electronics aftermarket?
Steel billets have limited applications in the electronics aftermarket due to their material properties. However, they can be used in certain components such as structural supports, mounting brackets, or enclosures that require high strength and durability.
Q:What are the applications of steel billets?
Steel billets are primarily used as raw material in the production of various steel products such as bars, rods, wire, and seamless tubes. They are also used in the manufacturing of components for automotive, construction, and machinery industries. Additionally, steel billets can be further processed to produce forgings, which are used in heavy machinery and equipment.
Q:What are the different surface defects found in tool steel billets?
There are several different surface defects that can be found in tool steel billets. These defects can occur during the manufacturing process or can be the result of handling, transportation, or storage. Some of the common surface defects found in tool steel billets include: 1. Decarburization: This defect occurs when the surface of the steel billet loses its carbon content due to exposure to high temperatures during heat treatment or improper cooling. Decarburization can lead to reduced hardness and wear resistance in the tool steel. 2. Scale: Scale refers to the formation of oxide layers on the surface of the steel billet. It can occur during the hot rolling process or due to exposure to high temperatures. Scale can negatively impact the surface finish and can also affect the mechanical properties of the tool steel. 3. Cracks: Cracks can occur on the surface of tool steel billets due to various reasons such as improper cooling, excessive stress during hot rolling, or quenching. These cracks can be either surface cracks (which are visible) or internal cracks (which may not be immediately visible). 4. Inclusions: Inclusions are non-metallic particles or impurities that are trapped within the steel billet during the manufacturing process. These inclusions can cause weak spots or discontinuities in the material, leading to reduced toughness and fatigue resistance. 5. Pitting: Pitting refers to the formation of small holes or cavities on the surface of the steel billet. It can be caused by localized corrosion, exposure to aggressive environments, or improper handling. 6. Roll marks: Roll marks are surface imperfections that occur due to the contact between the steel billet and the rolls during the hot rolling process. These marks can appear as grooves, scratches, or indentations on the surface of the tool steel. 7. Surface contamination: Tool steel billets can get contaminated with foreign substances such as dirt, oil, grease, or other particles during handling, transportation, or storage. These contaminants can negatively affect the surface finish and can also lead to corrosion or other defects. It is important to detect and address these surface defects in tool steel billets to ensure the desired performance and reliability of the final tooling products. Various inspection techniques and quality control measures are employed to identify and mitigate these defects, such as visual inspection, ultrasonic testing, magnetic particle inspection, and surface cleaning processes.
Q:What are the main factors that determine the market price of steel billets?
The main factors that determine the market price of steel billets include supply and demand dynamics, global economic conditions, raw material costs, production capacity, and government policies and regulations.
Q:What are the different forging methods used for steel billets?
There are several different forging methods used for steel billets, each with its own advantages and applications. 1. Open Die Forging: This method involves shaping the steel billet between flat dies, allowing for flexibility in design and size. Open die forging is commonly used for larger and more complex parts that require customization, such as shafts, cylinders, and discs. 2. Closed Die Forging: Also known as impression die forging, this method involves shaping the steel billet within a set of dies that contain the desired shape. Closed die forging is ideal for producing high-precision and complex parts with tight tolerances, such as gears, connecting rods, and crankshafts. 3. Upset Forging: Upset forging involves increasing the cross-sectional area of the steel billet by compressing it between dies. This method is commonly used to create short-length parts, such as bolts, screws, and fasteners. 4. Roll Forging: In roll forging, the steel billet is passed through a set of cylindrical rolls that gradually shape it into the desired form. This method is often used to produce long parts with a consistent cross-section, such as bars, rods, and shafts. 5. Press Forging: Press forging utilizes a hydraulic or mechanical press to shape the steel billet. This method offers greater control over the forging process, allowing for precise shaping of intricate parts. Press forging is often employed for manufacturing automotive components, aerospace parts, and tools. 6. Isothermal Forging: Isothermal forging involves heating the steel billet and the dies to the same temperature, reducing the cooling effect during forging. This method allows for greater control over the microstructure and mechanical properties of the final product, making it suitable for producing parts that require high strength and temperature resistance. Each forging method offers unique benefits, allowing steel billets to be shaped into a wide range of products with varying complexity, size, and mechanical properties. The choice of forging method depends on factors such as the desired product, material properties, production volume, and cost considerations.
Q:How do steel billets contribute to the manufacturing of packaging materials?
Packaging materials manufacturing heavily relies on steel billets, especially those that necessitate strength and endurance. These semi-finished steel products are typically acquired through continuous casting or hot rolling. Steel billets significantly contribute to the production of steel drums, a pivotal aspect of packaging material manufacturing. Steel drums find extensive use in industries like chemicals, petroleum, and food processing for storing and transporting diverse substances. The robustness and rigidity of steel billets make them an ideal choice for manufacturing these drums, guaranteeing the integrity of the packaging remains uncompromised even under the weight and pressure of their contents. Apart from steel drums, steel billets are also indispensable in the creation of metal cans. Metal cans enjoy broad application in packaging food, beverages, and other consumer goods. They create an excellent barrier against moisture, light, and oxygen, thereby preserving and safeguarding the packaged items. Steel billets are employed in fabricating the can bodies, lids, and bottoms, imparting requisite strength and stability to withstand the pressure during canning and transportation. Furthermore, steel billets play a vital role in manufacturing steel straps and bands for securing and bundling packages. These straps effectively secure heavy and bulky items, preventing shifting or damage during transit. The high tensile strength of steel billets ensures the straps can adequately hold packages together, providing stability and protection. Moreover, steel billets are occasionally utilized in producing corrugated steel sheets. These sheets are commonly employed in manufacturing heavy-duty packaging materials like crates and pallets. Corrugated steel sheets possess excellent strength and rigidity, making them suitable for transporting heavy items over long distances. Steel billets undergo a series of processes, such as rolling, cutting, and shaping, to transform into these sheets, ensuring the final product meets the necessary specifications. In conclusion, steel billets play a pivotal role in packaging material manufacturing. Their strength, durability, and versatility make them ideal for producing steel drums, metal cans, straps, and corrugated steel sheets. By utilizing steel billets, manufacturers can create packaging materials capable of meeting the demands of diverse industries, ensuring the safe and secure transportation of goods.
Q:What are the different types of steel used for manufacturing billets?
There are several different types of steel that are commonly used for manufacturing billets, each with its own unique properties and applications. Some of the most common types of steel used for this purpose include: 1. Mild Steel: This is one of the most widely used types of steel for manufacturing billets. It has a low carbon content and is known for its strength and ductility. Mild steel is often used for general purpose applications where high strength is not required. 2. Carbon Steel: This type of steel contains higher levels of carbon compared to mild steel. It offers improved hardness and strength, making it suitable for applications that require greater resistance to wear and tear, such as tools and machinery components. 3. Alloy Steel: Alloy steel is made by adding various alloying elements, such as manganese, nickel, chromium, or molybdenum, to the base iron. This results in a steel with enhanced properties such as increased strength, durability, and corrosion resistance. Alloy steel billets are commonly used in the automotive, aerospace, and construction industries. 4. Stainless Steel: Stainless steel is a steel alloy that contains a minimum of 10.5% chromium, which provides excellent resistance to corrosion and staining. This makes it ideal for applications that require high levels of hygiene, such as food processing equipment and medical devices. 5. Tool Steel: Tool steel is a type of high-carbon steel that is specifically designed to be used in the production of tools, dies, and molds. It is known for its hardness, wear resistance, and ability to retain its shape at high temperatures. 6. High-Speed Steel: High-speed steel is a type of tool steel that is specifically designed to withstand high temperatures without losing its hardness. It is commonly used for cutting tools, such as drills and milling cutters. These are just a few examples of the different types of steel used for manufacturing billets. The choice of steel will depend on the specific requirements of the application, such as strength, durability, corrosion resistance, and temperature resistance.
Q:How are steel billets used in the manufacturing of electrical components?
Steel billets are used in the manufacturing of electrical components as they provide a strong and durable base material. These billets are first heated and then shaped into various forms, such as rods or bars, which are further processed to create the desired electrical components. The steel's high conductivity and resistance to corrosion make it ideal for applications where electrical conductivity is crucial, ensuring reliable performance and longevity of the components.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords