• Continue Casting Steel Billets/Blooms by Blasting Furnace System 1
  • Continue Casting Steel Billets/Blooms by Blasting Furnace System 2
Continue Casting Steel Billets/Blooms by Blasting Furnace

Continue Casting Steel Billets/Blooms by Blasting Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Continue Casting Steel Billets/Blooms by Blasting Furnace

 

1.Structure of  Continue Casting Steel Billets/Blooms by Blasting Furnace

 

Continue Casting Steel Billet by Blasting Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of  Continue Casting Steel Billets/Blooms by Blasting Furnace.

Continue Casting Steel Billet by Blasting Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

      There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.

 

 

3.  Continue Casting Steel Billets/Blooms by Blasting Furnace Images

 

 

Continue Casting Steel Billets/Blooms by Blasting Furnace

Continue Casting Steel Billets/Blooms by Blasting Furnace

 

 

 

 

4.  Continue Casting Steel Billets/Blooms by Blasting Furnace Specification

 Continue Casting Steel Billet by Blasting Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of  Continue Casting Steel Billets/Blooms by Blasting Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How about your company

A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

②How to guarantee the quality of the products

We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

③Could I know the process of the producing?

Sure.Steel billet is produced by the method of through three processes: It is through the steelmaking system of continuous casting equipment, directly by the molten steel pouring into billet; The second is the steelmaking system in the production of steel ingot casting billet through system of steel rolling rolling equipment or processing of steel semi-finished products; Three is the steelmaking system production of steel ingot by forging the semi-finished product processing equipment.

 

Q:What are the specifications for tool steel billets used in the manufacturing of cutting tools?
The specifications of tool steel billets used in the manufacturing of cutting tools can vary depending on the specific application and requirements. However, there are some commonly followed general specifications. 1. Composition: High-carbon alloy steels are typically used to make tool steel billets. These steels contain elements such as chromium, molybdenum, vanadium, tungsten, and cobalt, which enhance the hardness, wear resistance, toughness, and heat resistance of the tool steel. 2. Hardness: Tool steel billets need to have high hardness in order to withstand demanding cutting conditions. The hardness is usually measured on the Rockwell C (HRC) scale and can range from 58 HRC to 65 HRC or even higher for certain applications. 3. Wear Resistance: Cutting tools experience abrasive wear during operation. Therefore, tool steel billets are formulated to have excellent wear resistance properties, ensuring a longer tool life. This is achieved by incorporating alloying elements like chromium and vanadium, which increase the hardness and wear resistance of the tool steel. 4. Toughness: In addition to hardness and wear resistance, tool steel billets must have sufficient toughness to endure the high impact forces generated during cutting. High toughness ensures that the cutting tools do not easily fracture or chip, even under severe cutting conditions. 5. Heat Resistance: Cutting tools often face high temperatures during operation, especially in high-speed cutting applications. Tool steel billets must possess good heat resistance to prevent softening or deformation at elevated temperatures. This is achieved by adding alloying elements like molybdenum and tungsten, which contribute to the heat resistance properties of the tool steel. 6. Machinability: Tool steel billets should have good machinability to enable the production of complex cutting tool geometries with high precision. The proper selection of alloying elements and heat treatment processes can enhance the machinability of tool steel billets. It is important to note that the specific specifications for tool steel billets may vary depending on the cutting tool application, the material being cut, and the machining conditions. Therefore, consulting with the tool steel manufacturer or supplier is crucial to determine the exact specifications required for a particular cutting tool application.
Q:What are the challenges faced in steel billet manufacturing?
Some of the challenges faced in steel billet manufacturing include achieving consistent quality, maintaining efficiency in production processes, managing energy consumption, ensuring the safety of workers, and addressing environmental concerns. Additionally, market fluctuations and competition can also pose challenges in terms of pricing and demand.
Q:What are the quality standards for steel billets?
The quality standards for steel billets typically include criteria such as chemical composition, dimensional accuracy, surface finish, mechanical properties, and internal soundness. These standards ensure that the steel billets meet the required specifications for various applications and guarantee their strength, durability, and suitability for further processing.
Q:How are steel billets used in the manufacturing of packaging materials?
Steel billets are often used in the manufacturing of packaging materials due to their durability and strength. These billets, which are essentially semi-finished steel products, serve as the raw material for various packaging products such as cans, drums, and containers. To manufacture packaging materials, the steel billets are first heated to a specific temperature, allowing them to be easily shaped and molded. They are then passed through a series of rolling mills, where they are flattened and elongated into the desired shape and size. This process, known as hot rolling, helps to improve the mechanical properties of the steel and increase its strength. Once the steel billets have been transformed into the desired shape, they are further processed and coated to enhance their corrosion resistance and provide a smooth surface finish. This coating can be a layer of tin, lacquer, or polymer, depending on the specific packaging requirements. The finished steel packaging materials offer a wide range of advantages. They are strong and durable, providing excellent protection to the products they contain. They are also impermeable to moisture, gases, and light, ensuring the preservation and freshness of the packaged goods. Additionally, steel packaging materials are 100% recyclable, making them an environmentally friendly choice for packaging solutions. In summary, steel billets are an essential component in the manufacturing of packaging materials. By undergoing various shaping, rolling, and coating processes, these billets are transformed into strong and durable packaging products that provide excellent protection and preservation for a wide range of goods.
Q:How does the quality of steel billets affect the quality of the final product?
Determining the quality of the final steel product heavily relies on the quality of steel billets. Steel billets are semi-finished products that undergo a continuous casting process to serve as raw materials for downstream steel products. To begin with, the chemical composition of steel billets greatly affects the quality of the end product. Steel is primarily an alloy of iron and carbon, with additional elements like manganese, chromium, nickel, and others. The presence and precise amount of these alloying elements in the billets have a significant impact on the properties of the final steel, including strength, hardness, ductility, and corrosion resistance. Any variation or deviation in the chemical composition of the billets can lead to undesired changes in the characteristics of the final product. Furthermore, the physical properties of steel billets, including their size, shape, and internal structure, directly influence the quality of the final steel product. The dimensions and geometry of the end product are determined by the size and shape of the billets, ensuring proper fit and functionality. Moreover, the absence of defects like cracks, voids, or inclusions in the internal structure of the billets is crucial for producing high-quality steel products. Imperfections in the billets can propagate and cause failures, compromising the strength and overall quality of the final product. Additionally, the quality of the final steel product is influenced by the manufacturing process of the steel billets. Factors such as cooling rate, casting speed, and temperature control during the continuous casting process can affect the microstructure and overall homogeneity of the billets. Proper control and optimization of the process are necessary to ensure that the billets possess the desired metallurgical properties, such as a uniform grain structure and the absence of segregation or impurities. Moreover, the quality of steel billets directly impacts the efficiency and cost-effectiveness of subsequent steel processing operations. High dimensional accuracy in the billets reduces the need for excessive material removal during machining or shaping processes, resulting in higher material yield, reduced waste, and improved overall productivity. In conclusion, the quality of steel billets significantly influences the quality of the final steel product. The chemical composition, physical properties, and manufacturing process of the billets all play vital roles in determining the characteristics of the end product. By ensuring high-quality steel billets, manufacturers can produce steel products that meet industry standards, possess desired mechanical properties, and exhibit superior performance in various applications.
Q:What is the role of steel billets in the manufacturing of industrial boilers?
Steel billets play a crucial role in the manufacturing of industrial boilers. These billets serve as the raw material from which the various components of the boiler are formed. Industrial boilers are complex structures that require high-quality, durable materials to withstand the harsh conditions they operate in. Steel billets are typically made from carbon steel or alloy steel, which possess excellent strength and corrosion resistance properties. These billets are first heated and then shaped into different forms, such as plates, tubes, or rods, through processes like rolling, extrusion, or forging. These formed components are then further processed and assembled to create the boiler. In the manufacturing process, steel billets are used to fabricate important boiler components, such as the shell, tubes, and flues. The shell, made from steel plates, provides the main body of the boiler, while the tubes and flues allow for the passage of hot gases and water. Steel billets ensure the structural integrity of these components, as they can withstand high temperatures and pressures without deforming or failing. Moreover, steel billets are also used to create other auxiliary components of industrial boilers, including supports, brackets, and fittings. These components are crucial for the proper functioning and installation of the boiler, ensuring stability, efficiency, and safety. Overall, steel billets are essential in the manufacturing of industrial boilers as they provide the necessary strength, durability, and versatility required to withstand the demanding conditions of operation. The use of high-quality steel billets ensures that the boilers are reliable, long-lasting, and capable of meeting the rigorous performance standards expected in industrial applications.
Q:What are the different types of steel billet surface treatment defects?
There are several types of steel billet surface treatment defects that can occur during the manufacturing process. These defects can affect the quality and appearance of the steel billets, and it is important to identify and address them to ensure the overall performance of the final product. 1. Scale: Scale is a common defect that occurs when the steel billet is exposed to high temperatures during the manufacturing process. It appears as a layer of oxide on the surface of the billet, which can affect the adhesion of coatings or paints. 2. Inclusions: Inclusions are non-metallic particles or impurities that can be present on the surface of the steel billet. These inclusions can be caused by various factors, such as inadequate cleaning or improper handling during the manufacturing process. They can negatively impact the mechanical properties of the steel and reduce its overall performance. 3. Decarburization: Decarburization is a defect that occurs when the surface layer of the steel billet loses its carbon content due to exposure to high temperatures or a lack of protective atmosphere. This can lead to reduced hardness and strength in the affected area. 4. Pitting: Pitting is a localized defect that appears as small cavities or pits on the surface of the steel billet. It can be caused by the presence of impurities or by exposure to corrosive environments. Pitting can compromise the structural integrity of the billet and make it more susceptible to corrosion. 5. Surface cracks: Cracks can occur on the surface of the steel billet due to various factors, such as thermal stress, improper handling, or inadequate cooling. Surface cracks can weaken the billet and increase the risk of failure during subsequent processing or use. 6. Surface roughness: Surface roughness refers to an uneven or irregular surface texture on the steel billet. It can be caused by factors such as improper machining, inadequate cleaning, or the presence of scale or inclusions. Surface roughness can affect the appearance of the billet and may also impact its performance in certain applications. Overall, it is crucial to identify and address these surface treatment defects to ensure the quality and reliability of steel billets. Proper manufacturing processes, including adequate cleaning, protective atmospheres, and appropriate handling, can help minimize the occurrence of these defects and ensure the optimal performance of the final product.
Q:What are the potential applications of steel billets in the chemical aftermarket?
Steel billets have a wide range of potential applications in the chemical aftermarket. One of the key uses of steel billets is in the production of various chemical processing equipment. These billets can be used to manufacture reactors, heat exchangers, columns, and other critical components that are used in chemical plants. Furthermore, steel billets are also utilized in the construction of storage tanks for storing chemicals. These tanks need to be strong, durable, and resistant to corrosion, and steel billets provide the necessary properties to meet these requirements. In addition, steel billets find applications in the fabrication of pipelines and piping systems used for transporting chemicals. The high strength and resistance to temperature and pressure make steel billets an ideal choice for constructing pipelines that can handle corrosive and hazardous chemicals. Moreover, steel billets can be shaped and formed into various fittings and flanges that are essential components in chemical systems. These fittings and flanges are used to connect different sections of piping, valves, and other equipment, ensuring a secure and leak-free operation. Overall, the potential applications of steel billets in the chemical aftermarket are vast and diverse. From manufacturing chemical processing equipment to constructing storage tanks, pipelines, and fittings, steel billets play a crucial role in ensuring the safe and efficient operation of chemical facilities.
Q:What are the main factors affecting the formability of alloy steel billets?
The formability of alloy steel billets, which refers to the ability of the material to be shaped or formed without cracking or fracturing, is influenced by several key factors. 1. Alloy composition: The alloy composition of steel billets plays a significant role in determining their formability. Different alloying elements such as carbon, manganese, chromium, and nickel can alter the mechanical properties of the steel, including its ductility and toughness. Higher levels of certain elements can improve formability, while excessive amounts can lead to brittleness and reduced formability. 2. Grain size and structure: The grain size and structure of the steel billets also affect formability. Fine-grained structures have better formability compared to coarser grain sizes. This is because fine grains allow for more uniform deformation and reduce the likelihood of localized strain concentration, which can lead to cracking. 3. Temperature: The temperature at which the steel billets are processed greatly influences their formability. The material's ductility and ability to deform without cracking are generally enhanced at higher temperatures. This is due to the reduction in the material's yield strength and increased plasticity. However, excessively high temperatures can also lead to excessive grain growth and decreased formability. 4. Strain rate: The rate at which the steel billets are deformed is another important factor. Higher strain rates can result in reduced formability, as the material may not have sufficient time to accommodate the deformation before fracture occurs. Controlling the strain rate during forming processes is crucial to ensure optimal formability. 5. Lubrication: The use of lubricants during the forming process can significantly improve the formability of steel billets. Lubricants reduce friction between the material and the forming tools, minimizing the risk of sticking or tearing. They also help dissipate heat generated during deformation, preventing excessive temperature rise that can negatively impact formability. 6. Forming process: The specific method used to shape the steel billets can also affect formability. Different processes, such as forging, rolling, or extrusion, impose varying levels of strain and stress on the material. Each process has its own limitations and requirements for optimal formability, and selecting the appropriate forming method is crucial to achieve the desired shape without compromising the material's integrity. In summary, the formability of alloy steel billets is influenced by their alloy composition, grain size and structure, temperature, strain rate, lubrication, and the chosen forming process. Understanding and controlling these factors are essential for achieving the desired shape and avoiding defects or failures during the forming of alloy steel billets.
Q:What are the different types of cutting methods used for steel billets?
There are several different types of cutting methods used for steel billets, including sawing, shearing, flame cutting, and water jet cutting.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords