• China supplier Metallic material steel rebar System 1
  • China supplier Metallic material steel rebar System 2
China supplier Metallic material steel rebar

China supplier Metallic material steel rebar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
17497 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Standard:
AISI
Technique:
Hot Rolled
Shape:
Round
Surface Treatment:
Dry
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400
Certification:
ISO,CE
Thickness:
6-40mm
Length:
6M/12M
Net Weight:
1.5-2mt

Rebar has ridges that bind it mechanically to the concrete with friction, it can still be pulled out of the concrete 

under high stresses, an occurrence that often precedes a larger-scale collapse of the structure. To prevent such 

a failure, rebar is either deeply embedded into adjacent structural members, or bent and hooked at the ends to lock

it around the concrete and other rebars. This first approach increases the friction locking the bar into place while the 

second makes use of the high compressive strength of concrete.

Rebar is common steel reinforcing bar, an important component of reinforced concrete and reinforced masonry structures. 

It is usually formed from mild steel, and is given ridges for better frictional adhesion to the concrete

Product Description :

Chemical   composition (%):

Steel

C

Si

Mn

P

S

Ceq

HRB335

 

0.25

 

0.80

 

1.60

 

0.045

 

0.045

0.52

HRB400

0.54

HRB500

0.55

Mechanical   properties

Steel

Rel/

MPa

Rm/

MPa

A/

%

Agt/

%

HRB335

335

455

17

 

7.5

HRB400

400

540

16

HRB500

500

630

15

Package:

Standard   export packing or as customer's request

Application:

Construction,   building, bridge, road. ect

Payment   terms

1).100%   irrevocable L/C at sight.
  2).30% T/T prepaid and the balance against the copy of B/L.
  3).30% T/T prepaid and the balance against L/C

Delivery   time

15-30   days after receipt of L/C or deposit by T/T

China supplier Metallic material steel rebar

China supplier Metallic material steel rebar













Features

1Pure steel quality, stable chemical contents, small tolerance.
2
Constant Quality, good drawing performance.
3
High dimension accuracy degree, accuracy degree of Level C up to 80%, smooth surface, less scale, easy to be pickled.
4
Automatic bundling with 4 lines by Machine in tidy and good looks
5
Big high quality percentage, small coil percentage, and heavy coil weight for Hard Coil.
6
High sorbitizing percentage.


Packing:

In bundles, each bundle weight 3.5 tons. Load by container or by bulk verssel.

China supplier Metallic material steel rebar

China supplier Metallic material steel rebar


FAQ:

1.Q: What's your MOQ(minimum order quantity)?

A: One full container, mixed acceptable .

2. Q: What's your packing methods?

A: Packed in bundle or bulk ..

3. Q: How can I buy  CNBM products in my country?

A:Please send us an inquiry or email ,we will reply to you if there is distributor in your country

4. Q: Can we visit your factory?

 A: Warmly welcome. Once we have your schedule, we will arrange the professional sales team to follow up your case.

5. Q: How long does it take to get the product if i place an order?

 A:With the process of your requirements,we will pack and deliver in 3-7 days. If it is by sea shipment,it will take 15-45 days depending on different locations

 


Q:Can steel rebars be bent or shaped on-site during construction?
Yes, steel rebars can be bent or shaped on-site during construction. This is typically done using specialized tools and machinery to achieve the desired shape and size needed for the specific construction project.
Q:What are the main properties of steel rebars?
Steel rebars, also known as reinforcing bars, are essential components in reinforced concrete structures. They possess several key properties that make them ideal for providing strength and durability to these structures. 1. Strength: One of the primary properties of steel rebars is their high tensile strength. They can withstand significant pulling forces and provide the necessary reinforcement to resist cracking and structural failure in concrete. 2. Ductility: Steel rebars exhibit excellent ductility, meaning they can deform without fracturing under stress. This property allows them to absorb energy during seismic events or other extreme loads, enhancing the overall structural performance and resilience of the reinforced concrete. 3. Corrosion resistance: Steel rebars are typically manufactured with a protective layer, such as epoxy or galvanized coating, to prevent corrosion. This property is crucial as exposure to moisture, chloride ions, and other corrosive elements can significantly weaken the rebars and compromise the integrity of the structure. 4. Weldability: Steel rebars can be easily welded together, allowing for efficient and effective construction. This property ensures that rebars can be connected to form a continuous and robust reinforcement network, enhancing the overall strength and stability of the concrete structure. 5. Thermal compatibility: Steel rebars have similar thermal expansion and contraction properties to concrete, minimizing the risk of cracking or structural damage due to temperature changes. This compatibility ensures the long-term durability and stability of reinforced concrete structures. 6. Availability and cost-effectiveness: Steel rebars are widely available and relatively cost-effective compared to other reinforcing materials. This affordability, combined with their excellent mechanical properties, makes them a popular choice for structural reinforcement across various construction projects. In conclusion, the main properties of steel rebars include high tensile strength, ductility, corrosion resistance, weldability, thermal compatibility, and cost-effectiveness. These properties make steel rebars indispensable for providing structural strength and durability to reinforced concrete structures.
Q:Can steel rebars be used in sports arena construction?
Yes, steel rebars can be used in sports arena construction. Steel rebars are commonly used in the construction industry for their strength, durability, and ability to reinforce concrete structures. In sports arena construction, steel rebars are often utilized to reinforce the concrete foundations, beams, columns, and other structural elements of the building to ensure its stability and withstand heavy loads.
Q:What are the different methods of joining steel rebars?
There are several methods of joining steel rebars, each with its own advantages and disadvantages. Here are the most common methods: 1. Lap Splicing: This is the most common method of joining rebars. In lap splicing, two rebars are overlapped and tied together using wire or metal ties. This method is simple and cost-effective, but it requires longer lap lengths to achieve the required strength. 2. Mechanical Splicing: Mechanical splicing involves joining rebars using mechanical couplers or splices. These couplers are designed to provide a strong and reliable connection between the rebars. Mechanical splicing offers quicker installation and reduces the need for lap lengths. However, it may be more expensive than lap splicing. 3. Welding: Welding is another method of joining steel rebars. In this process, the rebars are heated and fused together using electric arcs or gas flames. Welding provides a strong and permanent connection, but it requires skilled labor and specialized equipment. It is commonly used in precast concrete applications. 4. Bolted Connections: Bolted connections involve using bolts and nuts to connect the rebars. This method provides a flexible and adjustable connection, making it suitable for certain applications. However, bolted connections require additional hardware and may not be as strong as other methods. 5. Adhesive Bonding: Adhesive bonding involves using epoxy or other adhesives to join rebars. The adhesive is applied to the rebars, and they are pressed together until the adhesive cures and forms a strong bond. Adhesive bonding offers a clean and aesthetically pleasing finish, but it may not be as strong as other methods and is more suitable for non-structural applications. It is important to note that the choice of joining method depends on factors such as the specific project requirements, structural design, and construction techniques. Consulting with structural engineers and following industry standards and codes is crucial to ensure the proper selection and implementation of the joining method for steel rebars.
Q:What are the different methods of connecting steel rebars?
There are various methods of connecting steel rebars, including lap splicing, mechanical splicing, and welding. Lap splicing involves overlapping the rebars and securing them with wire or tie bars. Mechanical splicing utilizes couplers or threaded sleeves to connect the rebars. Welding involves melting the rebars together to form a strong bond. Each method has its advantages and suitability depending on the specific requirements of the construction project.
Q:Can steel rebars be used in retaining walls and dams?
Yes, steel rebars can be used in retaining walls and dams. Steel rebars are commonly used in construction projects to reinforce concrete structures, including retaining walls and dams. The rebars provide added strength and stability to the structures, helping them withstand the pressure and forces exerted on them.
Q:What are the guidelines for the proper spacing of steel rebars in beams?
The guidelines for the proper spacing of steel rebars in beams typically depend on the specific design requirements and the structural engineer's recommendations. However, in general, rebars should be spaced evenly throughout the beam to ensure adequate structural integrity and load-bearing capacity. The spacing should be determined based on factors such as the beam's dimensions, the anticipated loads, and the type of reinforcement being used. It is essential to follow the relevant building codes and industry standards to ensure the proper spacing of rebars in beams for optimal structural performance.
Q:How can corrosion of steel rebars be prevented?
Corrosion of steel rebars can be prevented through various methods such as using corrosion-resistant materials, applying protective coatings, ensuring proper concrete cover, implementing cathodic protection systems, and maintaining a good drainage system to avoid water accumulation. Regular inspection and maintenance also play a crucial role in preventing corrosion.
Q:What are the different methods for attaching steel rebars to existing structures?
There are several methods for attaching steel rebars to existing structures, including drilling and epoxy anchoring, mechanical anchoring using couplers, welding, and using adhesive or resin-based systems. Each method has its own advantages and considerations depending on the specific requirements and conditions of the structure.
Q:How do steel rebars prevent concrete structures from cracking under load?
Steel rebars, also known as reinforcing bars, are crucial elements in concrete structures due to their vital role in crack prevention under heavy loads. Rebars contribute to the structural integrity and durability of concrete in several ways: 1. Reinforcement: Acting as tension members, steel rebars add strength to the concrete. Although concrete is strong in compression, it is relatively weak in tension. When a load is applied, rebars absorb the tensile forces and distribute them throughout the structure, reducing the risk of cracking. 2. Load transfer: By embedding rebars within the concrete, they facilitate the transfer of loads from one section to another. This mechanism ensures even distribution of stresses, preventing concentrated stress points that could lead to cracks. 3. Bonding: The texture and ridges on the rebar enhance its bond with the concrete. This bond is critical as it allows the effective transfer of stress between the concrete and the steel. The interlocking action between the two materials ensures their collaboration, enhancing the overall strength and load-bearing capacity of the structure. 4. Control of expansion and contraction: Concrete structures experience temperature variations that cause expansion or contraction. Steel rebars help control these movements by providing stability and limiting the extent of cracking. They absorb and accommodate the expansion and contraction, minimizing the risk of extensive cracking and maintaining the structural integrity. 5. Flexibility: Steel rebars possess a high degree of flexibility, enabling them to absorb dynamic loads and stresses. This flexibility ensures that the rebars can withstand external forces without fracturing or damaging the concrete. By absorbing and distributing these loads, rebars prevent cracks from forming and spreading throughout the structure. In conclusion, steel rebars prevent cracking in concrete structures by reinforcing the concrete, transferring loads, enhancing bonding, controlling expansion and contraction, and providing flexibility to absorb dynamic forces. Their presence significantly improves the strength, durability, and resistance to cracking of concrete structures under various loading conditions.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords