• carport system Solar mounting system System 1
carport system Solar mounting system

carport system Solar mounting system

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Packaging & Delivery

Packaging Detail:Normal package seaworthy

Delivery Detail:15 days

Specifications

Easy installation Competitive price TUV&SGS test report & CSA certification 15-warranty

Specifications

1) Super smooth beautiful appearance,outstanding quality,large supply.

2) Available in customized surface finishes.

3) Well machined,for example,cutting,drilling and milling with excellent tolerance.

4) Meet with customer’s designs and supply you best price.

5)Usages:Supply for solar panel modules.

Technical characteristics

Installation site:

ground,hillside,and grassland

Installation angle

it is based on customers’ requirements

Installation height

it is  basedon customers’ requirements

Solar panel type; with or without frame

Components arrangement    :horizontal or vertical

Support track

aluminum alloy extrusion

Quality warranty

15 years

Advantages

1)Quick installation: with high degree of pre-installed rate, the system could be easily installed by using galvanized carbon steel rails for PV Stent, and specially designed  connection parts of the PV bracket, which could reduce installation time and cost greatly.

2)Offer unmatched durability: with all structural components comprised of high class stainless steel and anodized aluminum alloy, it is designed for 25 years service life and backed by 15 years warranty.

3)Stand up to extreme weather: The SuninTek solar mount is designed to stand up to the extreme weather complied with the AS/NZ 1170 and other international structure load standard by the skilled engineer. The main support components also have been tested to guarantee its structure and load-carrying capacity.

4)Provide broad installation flexibility: These systems accommodate most commercially available framed solar panels , and they can scale easily from small to large, multi-megawatt installations.

5)Diversified Application: The PV mounting system produced can be adopted by various types of PV cells panels which you can find in the market. It can serve for both mini solar power system and huge plant with megawatt capability.

Main features

1. Installation cost savings.

2. Save installation time.

3. Increase the mechanical strength of solar energy mounting to ensure that wind requirements.

4. The outdoor for installation of solar energy.

5. Length can be customized according to customers.

6. Service life of up to 25 years.

7. Products through the international certification.

8. Stent material composition of the galvanized steel and aluminum.

9. 15 years system and structural guarantee.

10.Flexible post spacing withstands different wind & snow loads.

11. High quality material in Aluminium 6005-T5 and SUS 304.

12.Screws and nuts go with every components needed.

13.Mechanical calculation and reliability tested to ensure highest product quality.


Q:What is the average payback period for a solar energy system?
The average payback period for a solar energy system varies depending on various factors such as the initial cost of the system, location, energy usage, available incentives, and financing options. However, on average, it typically ranges from 5 to 10 years.
Q:Can solar energy systems be used in areas with strict building codes or historical preservation restrictions?
Yes, solar energy systems can be used in areas with strict building codes or historical preservation restrictions. While it may require some additional planning and design considerations, it is certainly possible to integrate solar energy systems into the existing structures in these areas. One way to incorporate solar energy systems is by using building-integrated photovoltaics (BIPV) or solar thermal systems that are seamlessly integrated into the building's design. These systems can be installed on rooftops, facades, or even as shading elements, ensuring that the historical aesthetics or architectural integrity of the building are not compromised. Furthermore, advancements in solar technology have allowed for the development of more visually appealing solar panels, such as solar tiles or transparent solar windows, which can blend in with the existing building materials. This makes it easier to gain approval from historical preservation boards or building code authorities. It is important to note that in areas with strict building codes or historical preservation restrictions, the approval process for installing solar energy systems may be more complex. It may require obtaining permits, conducting structural assessments, and working closely with local authorities to ensure compliance with regulations. However, with the growing recognition of the importance of renewable energy, many jurisdictions have developed specific guidelines and provisions for integrating solar systems in historic areas. In summary, solar energy systems can be used in areas with strict building codes or historical preservation restrictions by employing BIPV, solar thermal systems, or visually appealing solar panels. While the approval process may be more involved, with proper planning and adherence to guidelines, it is possible to harness solar energy without compromising the architectural or historical significance of the area.
Q:Can solar energy systems be used for powering off-grid emergency response centers?
Yes, solar energy systems can be used for powering off-grid emergency response centers. Solar panels can generate electricity from sunlight, which can be stored in batteries for use during emergencies or when the main power grid is unavailable. This sustainable and renewable energy source can provide a reliable power supply to ensure the continuous operation of critical equipment and communication systems in emergency response centers.
Q:Can a solar energy system be used for charging electric vehicles?
Certainly, electric vehicles can be charged using a solar energy system. Sunlight is captured by solar panels and transformed into electricity, which can be generated in places like rooftops, carports, or open areas. This clean and renewable energy can then power the charging of electric vehicles, eliminating the necessity for conventional fossil fuel-based charging methods. To meet the increasing demand for electric vehicles, solar-powered charging stations are being installed in various locations, including parking lots, highways, and residential areas. Utilizing solar energy for charging electric vehicles not only significantly reduces greenhouse gas emissions but also decreases our reliance on non-renewable energy sources. In this way, we contribute to creating a transportation system that is more sustainable and environmentally friendly.
Q:Are there any risks of electromagnetic radiation with solar energy systems?
Solar energy systems have potential risks related to electromagnetic radiation. These systems utilize photovoltaic panels to convert sunlight into electricity. The panels produce direct current (DC) electricity, which is then changed to alternating current (AC) electricity for use in homes and businesses. One potential source of electromagnetic radiation is the inverter, responsible for converting DC electricity to AC electricity. In some cases, these inverters may generate electromagnetic fields (EMFs) that emit low-frequency radiation. Although these EMFs are generally considered low and within acceptable limits, ongoing research aims to better understand any potential health effects from long-term exposure to these fields. Another risk involves high-frequency electromagnetic radiation from radio frequency (RF) communication devices, like wireless monitoring systems or communication modules used in solar energy systems. These devices wirelessly transmit and receive signals, causing concern about potential health effects from long-term RF radiation exposure. However, these devices typically have low power levels and are designed to comply with safety standards and regulations. It's important to note that the risks associated with electromagnetic radiation from solar energy systems are generally considered low compared to other everyday sources, such as cell phones, Wi-Fi routers, or power lines. Nonetheless, it is always advisable to follow safety guidelines provided by manufacturers and industry standards to minimize potential risks.
Q:I usually have to use about 10 degrees, more in the summer! Winter sunshine time 10 hours! Who knows how much a set price, what brand?
Sold to the power supply bureau 0.45 yuan once, the state subsidy fee of $0.42, a year issued 3000 kwh.
Q:Can solar energy systems be used for powering recycling facilities?
Yes, solar energy systems can be used to power recycling facilities. Solar panels can generate electricity from the sun's energy, which can then be used to power the various operations and machinery involved in recycling processes. This renewable energy source helps reduce carbon emissions and makes recycling facilities more sustainable and environmentally friendly.
Q:How do solar energy systems impact the electric grid?
Solar energy systems impact the electric grid by providing a clean and renewable source of energy that helps reduce the overall demand for electricity from traditional power plants. By generating electricity locally, solar energy systems can help decentralize the grid and improve its reliability. However, the intermittent nature of solar power can pose challenges to grid stability and require additional measures to balance supply and demand effectively.
Q:How do solar energy systems perform in different weather conditions?
Solar energy systems can still generate electricity on cloudy or rainy days, although their performance may be reduced compared to sunny days. However, extreme weather conditions such as heavy snow or hail can have a more significant impact on their efficiency. Overall, solar energy systems are designed to perform well in various weather conditions, but their output may vary depending on the level of sunshine available.
Q:Are there any risks of electrical shock with solar energy systems?
Solar energy systems carry potential risks of electrical shock. While generally considered safe, these systems can be hazardous due to the presence of high voltages and electrical currents. Failure to handle or manage them properly can result in accidents. Several key risks are associated with solar energy systems: 1. Installation and maintenance: Improper procedures during the installation and maintenance of solar panels can lead to contact with live electrical components. This can happen when safety protocols are not followed or when untrained individuals attempt to handle electrical connections. 2. Equipment or wiring malfunctions: Defective inverters, wiring, or other equipment can increase the risk of electrical shock. Poor installation practices or insufficient maintenance can also result in electrical faults, exposing individuals to dangerous currents. 3. Fire hazards: While not directly related to electrical shock, faulty electrical components or wiring can raise the risk of fires in solar energy systems. Attempting to extinguish such fires without shutting down the electrical system first can further worsen the risk of electrical shock. To minimize these risks, it is essential to adhere to proper installation and maintenance procedures. This often involves seeking assistance from licensed professionals. Furthermore, individuals working with solar energy systems should be trained in safety protocols, including the use of appropriate personal protective equipment and ensuring proper grounding of electrical systems. Regular inspections and maintenance are also crucial to detect and address any potential electrical hazards.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords