• Carbon Steel Billets High Quality Square Billets for construction System 1
  • Carbon Steel Billets High Quality Square Billets for construction System 2
  • Carbon Steel Billets High Quality Square Billets for construction System 3
Carbon Steel Billets High Quality Square Billets for construction

Carbon Steel Billets High Quality Square Billets for construction

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
50 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description of Carbon Steel Billets High Quality Square Billets for construction

GRADESIZEAPPLICATION

Q195/

215

100mm*100mm*6mREBAR
120mm*120mm*6m
130mm*130mm*6m/12m
150mm*150mm*6m/12m

 

Chemical Compositon of Carbon Steel Billets High Quality Square Billets for construction

Q195/

215

C (%)Si (%)Mn (%)P(%)S(%)
0.06-0.120.15-0.300.35-0.500.045% Max    0.045Max

 

Technology process of Carbon Steel Billets High Quality Square Billets for construction

1.Heat the EVA film

2.Cover the heated EVA film on the mould(can be made from wood or aluminum)

3.Spray a coating in a certain baume degree

4.Put on the empty blask

5.Sand-up the flask and vibrate to compaction

 

Packaging & Delivery of Carbon Steel Billets High Quality Square Billets for construction

Packaging Details:containers

Delivery Detail:Complete one set of equipment needs for three months

The products can be delivered by bulk vessel or by container. As for container, products with the length of 6m will be loaded in 20’ container, with 9m or 12m, in 40’ container.

-The maximum quantity of loading of container is 25 tons.

-The products usually are transported to the nearest port from the production place.

 

Products Show

Prime Quality Q195/215 CNBM Steel Billets with Competitive Price

 

FAQ:

1.Your advantages?

Professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent    

customer solution proposale

2. Test & Certificate?

SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3. Factory or Trading Company?

CNBM is a trading company but we have so many protocol factories and CNBM works as a trading   department

of  these factories. Also CNBM is the holding company of many factories.

4. Payment Terms?

30% TT as deposit and 70% before delivery.

Irrevocable L/C at sight.

5. Trading Terms?

EXW, FOB, CIF, FFR, CNF

6. After-sale Service?

CNBM provides the services and support you need for every step of our cooperation. We're the business

partner you can trust.

For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

 

Q:How are steel billets used in the production of automotive braking systems?
The production of automotive braking systems heavily relies on steel billets, which serve as a vital ingredient. These billets, essentially semi-finished steel products, act as the raw material for further processing. Typically, they are created through the casting process, in which molten steel is poured into molds and allowed to solidify. In the realm of automotive braking systems, steel billets are primarily utilized for the manufacturing of brake rotors or discs. These components play a critical role as they provide the surface on which the brake pads make contact, generating friction and ultimately halting the vehicle. Due to the intense stress and heat experienced during braking, brake rotors require a material that is strong, durable, and heat-resistant – qualities that steel possesses. Once the steel billets are acquired, they undergo a series of manufacturing processes to transform them into brake rotors. Initially, the billets are heated to a specific temperature, enhancing their malleability and making them easier to shape. Subsequently, a process known as forging is employed, subjecting the heated billets to high pressure in order to mold them into the desired form of the brake rotor. This forging process strengthens and fortifies the steel, rendering it resistant to wear and deformation. Following the forging stage, the brake rotor undergoes additional machining processes. This includes the turning of the rotor's surface to ensure it is flat and smooth, providing an even contact surface for the brake pads. Further modifications, such as drilling or slotting, may be performed to enhance heat dissipation and prevent the accumulation of gases or debris between the pad and rotor. These machining processes are vital for achieving the necessary dimensions and surface finish of the brake rotor. Once the brake rotor is manufactured, it is then assembled alongside other components of the braking system – brake calipers, pads, and hydraulic lines – to create a fully functional braking system. The utilization of steel billets in the production of brake rotors guarantees a reliable, durable, and capable braking system that can withstand the demanding conditions of automotive braking. In conclusion, steel billets are indispensable in the production of automotive braking systems, serving as the foundation for the creation of brake rotors – key components responsible for halting vehicles. Through processes such as heating, forging, and machining, the billets are transformed into robust and finely finished brake rotors. The end result is a dependable and long-lasting braking system that ensures vehicle safety and performance.
Q:How do steel billets contribute to the manufacturing of aerospace components?
The manufacturing of aerospace components heavily relies on steel billets, which are semi-finished products utilized as the initial material in creating various aerospace parts. The versatility of steel billets contributes significantly to the manufacturing of aerospace components. Steel possesses exceptional strength, durability, and corrosion resistance, making it an ideal material for aerospace applications. High-quality steel billets form a solid foundation for producing components that can withstand the extreme conditions encountered during aerospace operations. Steel billets find extensive use in manufacturing critical aerospace parts such as engine components, landing gear, structural frames, and fasteners. The billets undergo heating and are then subjected to various forming and machining processes. These processes, including forging, rolling, and extrusion, shape the steel billets into the desired components, ensuring they meet the aerospace industry's stringent requirements for strength, precision, and weight reduction. Additionally, steel billets offer remarkable design flexibility. They can be easily machined and shaped into intricate geometries, enabling manufacturers to create aerospace components with precise tolerances. This flexibility allows the production of lightweight yet sturdy parts, contributing to aircraft weight reduction and enhancing fuel efficiency. Moreover, steel billets possess superior metallurgical properties. By employing appropriate heat treatment and alloying techniques, the mechanical properties of the steel can be customized to meet specific aerospace requirements. This enables manufacturers to achieve the desired balance between strength, stiffness, and toughness in the final components, ensuring their ability to withstand the high-stress environments encountered in aerospace applications. In conclusion, steel billets play an indispensable role in the manufacturing process for aerospace components. Their versatility, strength, design flexibility, and metallurgical properties make them an excellent starting material for producing critical parts in the aerospace industry. Utilizing steel billets allows manufacturers to ensure the production of high-quality, reliable, and long-lasting components that meet the rigorous demands of the aerospace sector.
Q:Are steel billets affected by extreme temperatures?
Steel billets can be affected by extreme temperatures. High temperatures cause them to expand and deform due to the thermal expansion property of steel. Conversely, extremely low temperatures can make steel billets contract and become more brittle as the cold temperature reduces their ductility, making them more susceptible to fracture. Hence, it is essential to take into account the impact of extreme temperatures on steel billets during their design, handling, and storage to avoid any undesired deformation or failure.
Q:How are steel billets measured and classified?
Steel billets are measured and classified based on their dimensions and chemical composition. The dimensions of a steel billet are typically measured in terms of length, width, and height. These measurements are important for determining the size and shape of the billet, which in turn affects its usability in various applications. Additionally, steel billets are classified based on their chemical composition. This is determined by analyzing the percentage of various elements present in the steel, such as carbon, manganese, silicon, and sulfur. The chemical composition of a billet is crucial in determining its mechanical properties, such as tensile strength, hardness, and ductility. The classification of steel billets is typically done according to international standards set by organizations such as the American Society for Testing and Materials (ASTM) or the International Organization for Standardization (ISO). These standards provide guidelines for measuring and classifying steel billets, ensuring consistency and quality across the industry. In terms of measurement, steel billets are typically measured using calipers or precision measuring instruments to obtain accurate dimensions. The length is measured from end to end, while the width and height are measured at their widest points. These measurements are often recorded in millimeters or inches, depending on the regional standards. After measuring the dimensions and analyzing the chemical composition, steel billets are classified into various grades or specifications. These classifications help in identifying the suitable applications and industries where the billets can be used. For example, there may be specific grades of steel billets that are suitable for construction purposes, while others are more suitable for manufacturing automotive parts or machinery. In conclusion, steel billets are measured and classified based on their dimensions and chemical composition. The dimensions of the billets are measured in terms of length, width, and height, while the chemical composition is determined by analyzing the percentage of various elements present in the steel. These measurements and classifications are essential for determining the usability and quality of the steel billets in different applications and industries.
Q:What are the different methods of surface inspection for steel billets?
There are several methods of surface inspection for steel billets, which are used to identify any defects or irregularities on the surface. These methods include visual inspection, magnetic particle inspection, liquid penetrant inspection, ultrasonic inspection, and eddy current inspection. Visual inspection is the simplest and most commonly used method, where inspectors visually examine the surface of the billets for any visible defects such as cracks, pits, or surface irregularities. This method relies on the expertise and experience of the inspector. Magnetic particle inspection involves the use of magnetic fields and magnetic particles to detect surface and near-surface defects. A magnetic field is applied to the steel billet, and magnetic particles are applied to the surface. If there is a defect, the magnetic particles will be attracted to it, making the defect visible under proper lighting. Liquid penetrant inspection is another method used to detect surface defects. In this method, a liquid penetrant is applied to the surface of the billet. The penetrant seeps into any surface defects, and after a certain amount of time, excess penetrant is removed. A developer is then applied, which draws the penetrant out of the defects, making them visible. Ultrasonic inspection involves the use of high-frequency sound waves to detect internal and surface defects. A transducer is used to emit sound waves into the billet, and the reflected waves are analyzed to identify any defects. This method can detect defects such as cracks, voids, and inclusions. Eddy current inspection is a non-destructive testing method that uses electromagnetic induction to detect surface defects. A probe is moved over the surface of the billet, and an alternating current is passed through it. Any surface irregularities or defects will disrupt the flow of current, which can be detected and analyzed. Each of these methods has its own advantages and limitations, and the choice of method depends on the specific requirements and constraints of the inspection process. By utilizing these different methods, manufacturers can ensure the quality and reliability of steel billets before they are further processed or used in various applications.
Q:What are the main factors affecting the metallurgical properties of steel billets?
There are several main factors that affect the metallurgical properties of steel billets. These factors include the composition of the steel, the heat treatment applied, the presence of impurities, and the cooling rate. The composition of the steel plays a crucial role in determining its metallurgical properties. The amount of carbon, as well as the presence of other alloying elements such as manganese, chromium, and nickel, can significantly impact the steel's strength, hardness, and ductility. Different compositions can also affect the steel's ability to resist corrosion or exhibit magnetic properties. Heat treatment is another important factor that affects the metallurgical properties of steel billets. This process involves heating the steel to a specific temperature and then cooling it at a controlled rate. Heat treatment can alter the microstructure of the steel, which in turn affects its hardness, toughness, and overall mechanical properties. Different heat treatment methods, such as annealing, quenching, and tempering, can be applied to achieve desired metallurgical properties. Impurities present in the steel can also influence its metallurgical properties. Common impurities include sulfur, phosphorus, and oxygen. These impurities can negatively impact the steel's mechanical properties, such as reducing its strength and ductility. Therefore, the level of impurities needs to be minimized to ensure the desired metallurgical properties. Lastly, the cooling rate during the solidification process plays a crucial role in determining the microstructure and properties of the steel billets. Rapid cooling, such as in the case of quenching, can result in a fine-grained microstructure, which enhances the steel's strength and hardness. On the other hand, slow cooling, such as during annealing, can lead to a coarse-grained microstructure, which improves the steel's ductility and toughness. In conclusion, the main factors affecting the metallurgical properties of steel billets include the composition of the steel, the heat treatment applied, the presence of impurities, and the cooling rate. These factors are interrelated and need to be carefully controlled to achieve the desired properties for different applications.
Q:How are steel billets used in the production of hydraulic cylinders?
Hydraulic cylinders rely on steel billets as a crucial raw material for their production. These billets, which are cylindrical and made of high-quality steel, serve as the starting point for the manufacturing process. To begin, the steel billets are heated in a furnace. This heating process, known as hot rolling, makes the billets more malleable and easier to work with. Once heated, the billets are then passed through a series of rollers, shaping and elongating them to the desired size and form. After the initial shaping, the billets undergo further processing through various machining operations. These operations include drilling, boring, milling, and grinding, among others. By using these machining processes, the necessary features and dimensions for hydraulic cylinders, such as piston and rod bores, mounting holes, and fluid flow ports, are created. Once the machining operations are complete, the billets are subjected to heat treatment to improve their mechanical properties. The specific heat treatment method, either quenching and tempering or annealing, depends on the hydraulic cylinder's requirements. Heat treatment enhances the steel's strength, hardness, and durability, ensuring that the hydraulic cylinder can withstand the high pressures and forces it will encounter during operation. After shaping, machining, and heat treatment, the steel billets are ready for the final assembly stage. Other components, such as pistons, rods, seals, and valves, are added to complete the hydraulic cylinder. These components are carefully integrated with the billets to ensure proper functionality and reliable performance. In conclusion, steel billets are essential for the production of hydraulic cylinders. They undergo heating, shaping, machining, heat treatment, and assembly to form the core structure of the cylinder. This guarantees that the hydraulic cylinder possesses the necessary strength, durability, and precision required for efficient operation in a variety of industrial and mobile applications.
Q:What are the advantages of using steel billets over other materials?
Using steel billets instead of other materials has several advantages. To begin with, steel billets possess remarkable strength and durability. Steel is renowned for its high tensile strength, making it perfect for applications that require bearing heavy loads. This property enables steel billets to withstand substantial weights and resist deformation, ensuring the integrity and longevity of structures. Additionally, steel billets offer exceptional machinability and formability. Steel is an adaptable material that can be easily shaped and molded into various forms, allowing for customization and flexibility in design. This makes it suitable for a wide range of applications in industries such as construction, automotive, and manufacturing. Moreover, steel billets exhibit superior resistance to heat and corrosion. Steel inherently resists heat and can endure high temperatures without compromising its structural properties. This makes it suitable for applications that involve exposure to extreme temperatures, such as in the aerospace and energy sectors. Furthermore, steel possesses excellent corrosion resistance, guaranteeing its longevity and minimizing maintenance costs. Another advantage of steel billets is their recyclability. Steel is one of the most recycled materials globally, boasting a high recycling rate. This not only reduces the environmental impact of steel production but also makes it a more sustainable choice. Moreover, the recycling process does not compromise the quality or performance of steel, allowing for continuous reuse. Lastly, steel billets offer cost-effectiveness. Despite their numerous advantages, steel billets remain a cost-effective material in comparison to other alternatives. Their widespread availability, ease of manufacturing, and recyclability contribute to their affordability. Furthermore, the durability and low maintenance requirements of steel billets result in long-term cost savings for users. In conclusion, the utilization of steel billets presents various advantages in terms of exceptional strength, machinability, heat and corrosion resistance, recyclability, and cost-effectiveness. These qualities establish steel billets as the preferred choice in various industries, ensuring reliable and long-lasting performance.
Q:What are the main challenges in the transportation of steel billets?
The main challenges in the transportation of steel billets include ensuring proper handling and securing of the heavy and bulky loads, preventing damage or deformation during loading and unloading processes, and complying with safety regulations for transporting hazardous materials. Additionally, factors such as limited availability of specialized equipment, fluctuations in fuel prices, and coordinating logistics for long-distance shipments can pose challenges for efficient and cost-effective transportation of steel billets.
Q:What are the different grades of steel billets?
There are several different grades of steel billets, including low carbon steel, medium carbon steel, high carbon steel, alloy steel, and stainless steel. The specific grade of steel billet used depends on the intended application and desired properties of the final product.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords