• Calcined Petroleum Coke as Injection Coke for Foundry Use System 1
  • Calcined Petroleum Coke as Injection Coke for Foundry Use System 2
Calcined Petroleum Coke as Injection Coke for Foundry Use

Calcined Petroleum Coke as Injection Coke for Foundry Use

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
20.4
Supply Capability:
1014 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 Intrduction

Carbon additive to ningxia production of anthracite as raw material, after washing, crushing, high temperature calcination, filter, etc. Craft refined and become.This is after the anthracite calcination generated high carbon content and low volatile component of the new product, is an ideal raw material to make steel.

 Calcined Petroleum Coke comes from delayed coke which extracted from oil refinery. Although Calcined Petroleum Coke contains a little bit higher level of sulfur and nitrogen than pitch coke, the price advantage still makes it widely used during steel-making and founding as a kind of carbon additive/carburant.

 

Features
In the smelting process for reducing agent. Performance: replace the traditional oil carbon additive, decrease the cost of steelmaking. Features: low ash. low sulfur,low phosphorus, high calorific value. High ratio resistance,high mechanical strength,high chemistry activity. It is mainly used for metallurgy reductant inoculants, casting, refractory materials, machinery, electronics and other fields.Good quality

 

1) high absorption rate, it can be absorbed up to 90%.
2) absorbed more quickly than other carbon additive; no residue remains in furnace.
3) low Sulfur, the lowest can reach below 0.20%; low nitrogen, normally below 200ppm (0.02%)

Specifications

Products

CPC

F.C.%

98.5MIN 

98.5MIN 

98MIN 

ASH %

0.8MAX

0.8MAX

1MAX

V.M.%

0.7 MAX

0.7 MAX

1 MAX

SULFUR %

0. 5MAX

0. 7MAX

1MAX

MOISTURE %

0.5MAX

0.5MAX

1MAX

 

Pictures

 

Calcined Petroleum Coke as Injection Coke for Foundry Use

Calcined Petroleum Coke as Injection Coke for Foundry Use

Calcined Petroleum Coke as Injection Coke for Foundry Use

Calcined Petroleum Coke as Injection Coke for Foundry Use

 

FAQ:

(1)CPC could be as fuel 

 

Petroleum coke is a material relatively low in cost and high in heat value and carbon content with good chemical stability, making it an efficient and costeffective fuel for producing metal, brick and related products. 

 

(2)CPC could be as Graphite Electrodes

 

Graphite can be produced from lowsulfur needle petroleum coke, which must be heated above 5,432 degrees Fahrenheit. 

 

(3)CPC could be as Anodes

 

Calcined petroleum coke, often low in sulfur and metallic impurities, is used to make anodes for 

 

the smelting industry.Calcined petroleum coke is mixed with coal tar pitch in the production of 

 

anodes. 

 

 

Q:How is carbon used in the production of plastics?
Carbon is an essential component in the production of plastics. Plastics are polymers, which are long chains of repeating units. These units are made up of smaller molecules called monomers. Carbon atoms are a key element in these monomers, providing the backbone of the polymer chain. In the production of plastics, carbon is sourced from various petroleum products, such as crude oil or natural gas. These fossil fuels contain hydrocarbons, which are organic compounds made up of carbon and hydrogen atoms. Through a refining process called cracking, these hydrocarbons are broken down into smaller molecules, including ethylene and propylene, which are the building blocks for many types of plastics. Once these monomers are obtained, they are polymerized or chemically bonded together to form long chains. Carbon atoms play a crucial role in this process, as they link together to form the backbone of the polymer chain. The specific arrangement and bonding of carbon atoms determine the properties of the resulting plastic, such as its strength, flexibility, and durability. It is important to note that not all plastics are made solely from carbon. Other elements, such as oxygen, nitrogen, and chlorine, may be present in the monomers or added during the production process to enhance specific properties or introduce desired functionalities. Overall, carbon is a fundamental element in the production of plastics, providing the backbone structure and enabling the versatility and wide range of applications of plastic materials in various industries.
Q:What are the impacts of carbon emissions on indigenous communities?
Indigenous communities are greatly affected by carbon emissions, which have significant impacts on their environment, culture, health, and overall well-being. One of the main consequences is the degradation of their traditional lands and natural resources, which are crucial for their livelihoods, including hunting, fishing, and agriculture. The increase in carbon emissions leads to climate change, resulting in changes in temperature, weather patterns, and ecosystems. This disrupts the delicate balance of their ecosystems and makes it more challenging for them to sustain their way of life. The loss of traditional lands and resources also has profound cultural implications for indigenous communities. Their connection to the land is deeply rooted in their identity and spirituality. When their lands are degraded or destroyed due to carbon emissions, it erodes their cultural practices, knowledge, and traditions. This loss of cultural heritage affects not only indigenous communities but also the global society, as their unique knowledge about sustainable land management and conservation practices can offer valuable insights for addressing climate change and protecting the planet. Moreover, carbon emissions contribute to air pollution, which severely impacts the health of indigenous communities. Many indigenous communities live near industrial facilities or fossil fuel extraction sites, leading to increased exposure to pollutants such as particulate matter, sulfur dioxide, and nitrogen oxides. These pollutants cause respiratory illnesses, cardiovascular diseases, and other health issues, disproportionately affecting vulnerable members of these communities, including children and the elderly. In addition to immediate health impacts, the long-term consequences of carbon emissions, such as rising sea levels and extreme weather events, pose further threats to the existence of indigenous communities. Many indigenous communities reside in low-lying coastal areas or remote regions that are more susceptible to the effects of climate change, including coastal erosion, flooding, and loss of traditional food sources. These changes not only disrupt their way of life but also force them to consider relocation, resulting in the loss of their cultural identity and connection to their ancestral lands. Addressing carbon emissions and mitigating climate change is crucial for the well-being and survival of indigenous communities. It involves recognizing their rights to their traditional lands, resources, and self-determination, as well as involving them in decision-making processes regarding environmental conservation. Supporting sustainable development projects that prioritize local needs and indigenous knowledge can help foster resilient communities that can adapt to the changing climate. Ultimately, by reducing carbon emissions and protecting the environment, we can preserve the cultural diversity and invaluable contributions of indigenous communities for future generations.
Q:What are the effects of carbon emissions on the stability of grasslands?
Carbon emissions can have various negative effects on the stability of grasslands. Increased levels of carbon dioxide in the atmosphere can contribute to climate change, resulting in altered precipitation patterns and increased temperatures. These changes can cause shifts in grassland ecosystems, leading to reduced plant productivity, changes in species composition, and even the loss of grassland habitats. Additionally, carbon emissions can indirectly impact grasslands by contributing to the acidification of rain, which can harm soil health and hinder the growth of grasses. Overall, carbon emissions pose a significant threat to the stability and resilience of grassland ecosystems.
Q:How is activated carbon produced?
Activated carbon is produced by heating carbon-rich materials, such as wood, coal, or coconut shells, at high temperatures in the absence of oxygen. This process, known as activation, creates a highly porous material with a large surface area, which gives activated carbon its adsorptive properties.
Q:Why can carbon fiber in addition to static electricity ah?
Is graphite conductive? Think about it!
Q:What is carbon nanotube?
Carbon nanotubes, which are made up of carbon atoms arranged in a hexagonal lattice pattern, are cylindrical structures. Their size is incredibly small, measuring in the nanometer scale, and their length can vary from a few nanometers to several centimeters. The remarkable properties of carbon nanotubes make them highly desirable for a wide range of applications. They possess exceptional strength, surpassing that of any other known material, which makes them perfect for use in structural composites. Additionally, they exhibit excellent electrical conductivity, thermal conductivity, and chemical stability, making them valuable in fields like electronics, energy storage, and catalysis. There are two primary types of carbon nanotubes: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs). Single-walled nanotubes consist of a single layer of carbon atoms rolled into a tube, while multi-walled nanotubes consist of multiple concentric layers of carbon atoms. The arrangement of carbon atoms and the tube's diameter determine the nanotube's properties. Due to their unique properties, carbon nanotubes have the potential to revolutionize various industries. Researchers are exploring their use in electronics as high-performance transistors, interconnects, and sensors. They also hold promise in energy storage, enabling batteries and supercapacitors with higher energy densities and faster charging rates. Furthermore, their large surface area and distinctive chemical properties make them suitable for catalytic applications, such as water purification and chemical synthesis. Despite the immense potential, challenges remain in the large-scale production and commercialization of carbon nanotubes. However, ongoing research and development efforts continue to expand their applications, making carbon nanotubes an exciting field of study with significant future possibilities.
Q:How is carbon used in the production of pigments?
The ability of carbon to create vibrant and deep colors makes it a common choice for pigments. These pigments, also known as carbon blacks, are produced by incomplete combustion of hydrocarbons like natural gas or petroleum. The resulting carbon particles are then processed and purified to create a fine powder that serves as a pigment. Various industries, including inks, paints, plastics, and cosmetics, utilize these carbon-based pigments. In the ink production process, carbon black is frequently added to enhance color intensity and opacity. Similarly, in the manufacturing of paints and coatings, it is used to provide a rich and deep black color. Plastics can be enhanced by adding carbon black, which improves their UV resistance, making them more durable and long-lasting. This is especially crucial for outdoor applications where exposure to sunlight can lead to fading and degradation. Carbon-based pigments are also widely used in the cosmetics industry. They are incorporated into products like eyeliners, mascaras, and lipsticks to create intense black or dark shades. The stability and consistent color delivery of carbon black pigments make them a preferred choice in cosmetics. In summary, the ability of carbon to create vibrant and deep colors makes it extensively used in pigment production. Carbon-based pigments have diverse applications in various industries, enhancing color intensity, providing UV resistance, and delivering rich black shades.
Q:RT~ I remember our teacher said, but I forgot all of a sudden......Ask for advice!
Well, secondary carbon and oxygen double bonds do not add much. What is involved in high school?:1, in the nickel catalyzed conditions, with H2 addition (also a reduction, but note that in the carboxyl group -COOH carbon oxygen double bond can not be added by the general method plus H)2, aldehyde addition (aldol condensation). The college entrance examination had many times, is simply an aldehyde -CHO under certain conditions and containing active H group reaction R-H (commonly known as alpha H that -H doesn't have to be in the next -CHO H, like -COOH, phenyl can also, but to see more in the next -CHO generation of C- (OH) -R). The H is added to the O, and the alkyl R- is added to the C.For example: CH3-CHO+HCHO==CH3-C (OH) -CHO (called 2- 3-hydroxypropanal)There are some universities, the mechanism involved is more complex, you want to HI me
Q:What are the challenges and opportunities of transitioning to a low-carbon economy?
The transition to a low-carbon economy comes with both challenges and opportunities. Firstly, the need for significant changes in infrastructure, technology, and behavior poses a major challenge. This shift requires substantial investments in renewable energy sources, energy-efficient buildings, and sustainable transportation systems. Moreover, it involves moving away from fossil fuels, which have been deeply ingrained in our economies for centuries. Another challenge lies in the potential economic impact on industries heavily reliant on carbon-intensive activities. Sectors like coal mining, oil refining, and traditional manufacturing may experience job losses and economic disruptions. To ensure a fair and inclusive transition for affected workers and communities, careful planning and support are necessary. However, transitioning to a low-carbon economy also opens up numerous opportunities. Firstly, it can drive innovation and create new industries and job prospects. The development and implementation of renewable energy technologies, such as solar and wind power, can stimulate economic growth and generate employment in manufacturing, installation, and maintenance. Additionally, it encourages research and development in clean technologies, leading to breakthroughs and discoveries that can benefit various sectors. Secondly, a low-carbon economy can enhance public health and quality of life. By reducing dependence on fossil fuels, we can mitigate air pollution and its associated health issues, like respiratory problems and cardiovascular diseases. Furthermore, investments in energy-efficient buildings can improve comfort, decrease energy costs, and enhance indoor air quality. Moreover, transitioning to a low-carbon economy can bolster energy security and diminish geopolitical tensions. By diversifying energy sources and reducing reliance on fossil fuel imports, countries can enhance their resilience to price fluctuations and conflicts. This shift also promotes energy independence and reduces the need for costly military interventions in resource-rich regions. Lastly, transitioning to a low-carbon economy is crucial for combatting climate change and safeguarding the environment. By curbing greenhouse gas emissions, we can mitigate the impacts of global warming, such as extreme weather events, rising sea levels, and disruptions to ecosystems. This transition enables us to preserve biodiversity, protect natural resources, and create a sustainable future for generations to come. In conclusion, the transition to a low-carbon economy presents challenges like infrastructure changes, economic disruptions, and job losses. However, it also offers opportunities for innovation, job creation, improved public health, enhanced energy security, and environmental protection. With careful planning, collaboration, and support, these challenges can be overcome, and the opportunities can be maximized, leading to a more sustainable and prosperous future.
Q:How is carbon used in the production of pharmaceuticals?
Carbon is used in the production of pharmaceuticals through various processes such as carbonization, activation, and purification. It serves as a crucial component in the synthesis of drugs and plays a significant role in drug formulation, purification, and separation processes. Additionally, carbon-based materials are utilized as drug carriers and adsorbents to enhance drug delivery and optimize the efficiency of pharmaceutical manufacturing.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords