• Brake Pad Making Material Synthetic Graphite System 1
  • Brake Pad Making Material Synthetic Graphite System 2
Brake Pad Making Material Synthetic Graphite

Brake Pad Making Material Synthetic Graphite

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
20 m.t
Supply Capability:
1000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Graphite & Carbon Raiser

 Product Description

Our carbon additive gain the features of high carbon, low sulfur, low nitrogen and  harmful impurities, and it is widely used in steel and iron melting and casting to  increase the carbon content of final products, now this product is widely used by  increase the carbon content of final products, now this product is widely used by  the carbon content in cylinder body, cylinder cover, etc, and also can improve the  the carbon content in cylinder body, cylinder cover, etc, and also can improve the 

It mainly includes 

1) Calcined anthracite coal 

2) Calcined petroleum coke 

3) Graphitized petroleum coke 

3) Graphitized petroleum coke

Calcined Petroleum Coke

FC:98.5%min,

S:0.5%max

A:0.8%max

V:0.7%max

Mositure:0.5%max

Size:1-5mm

 

This product is mainly used in steel-making and foundry. Calcined Petroleum Coke
Calcined Petroleum Coke comes from delayed coke which extracted from oil refinery. Although Calcined Petroleum Coke contains a little bit higher level of sulfur and nitrogen than pitch coke, the price advantage still makes it widely used during steel-making and founding as a kind of carbon additive/carburant.

 

Technology:

Laborary Equpment
In our lab,we has a high precision balance,mullfe furnace,sample making machine, dring box,sulfur measurement instrument and other calibratiing equipments.As a result,before deliverung to our customers,our products have to pass a strict test to ensure the quality and components.The testing reports will be sent to our customers to confirm untill they satisfy with it.

 

Packaging & Delivery

Packaging Detail:25kg paper bag into 1t weaving bag 5kg, 10kg and 20kg weaving bag into 1t weaving bag 25kg weaving bag put on pallet covered with entanglement wrap product direct into packing bag 25kg paper bag put on pallet covered with entanglement Wrap 25kg weaving bag into 1t weaving bag.

 Delivery Details: 7 days

 

 

 

 

Brake Pad Making Material Synthetic Graphite

 

Q:What is the role of monolithic refractories in blast furnaces?
Monolithic refractories play a crucial role in blast furnaces as they provide high temperature resistance, erosion and corrosion resistance, thermal insulation, and structural integrity. These refractories are used to line the inside of the blast furnace, forming a protective barrier against the extreme heat and chemical reactions occurring within. They help to maintain the integrity of the furnace and ensure its efficient operation by withstanding the aggressive conditions of the molten iron and slag. Additionally, monolithic refractories allow for easier installation and repair compared to traditional brick refractories, making them a preferred choice in blast furnace applications.
Q:What are the main factors affecting the corrosion resistance of monolithic refractories?
The corrosion resistance of monolithic refractories is influenced by several key factors. Firstly, the chemical composition of the refractory material plays a significant role. Refractories with a high content of silica (SiO2) are generally more resistant to corrosion as silica has excellent resistance to acidic environments. On the other hand, refractories with a high alumina (Al2O3) content are more resistant to basic environments. Secondly, the microstructure of the refractory material is important. A dense and well-bonded microstructure provides better resistance to corrosion compared to materials with a porous structure. The presence of pores or cracks can allow corrosive substances to penetrate and attack the refractory, leading to its degradation. The temperature at which the refractory is exposed also affects its corrosion resistance. Higher temperatures can accelerate the corrosion process by promoting more aggressive chemical reactions. Moreover, thermal cycling, where the refractory is subjected to repeated heating and cooling, can create thermal stresses that can contribute to the degradation of the material. The type and concentration of corrosive agents present in the environment also impact the corrosion resistance of monolithic refractories. Different corrosive agents have varying degrees of reactivity with refractory materials. For example, acidic substances such as sulfuric acid or hydrochloric acid can cause significant corrosion, while alkaline substances like calcium oxide can lead to more gradual degradation. In addition, the mechanical stress applied to the refractory can influence its corrosion resistance. Mechanical vibrations, abrasion, or impact can weaken the refractory structure, making it more susceptible to corrosion. Finally, the manufacturing and installation process can affect the corrosion resistance of monolithic refractories. Factors such as proper mixing, curing, and drying techniques can contribute to the development of a more resistant refractory structure. In summary, the main factors affecting the corrosion resistance of monolithic refractories include the chemical composition, microstructure, temperature, presence of corrosive agents, mechanical stress, and manufacturing/installation processes. Understanding and managing these factors are crucial in selecting and maintaining the most suitable refractory material for a given application.
Q:How are monolithic refractories different from conventional refractories?
Monolithic refractories are different from conventional refractories in that they are composed of a single, continuous structure, whereas conventional refractories are made up of multiple individual bricks or shapes. Monolithic refractories offer greater flexibility in terms of installation, as they can be easily shaped and molded to fit various applications. Additionally, monolithic refractories usually have better thermal shock resistance and are more resistant to cracking, making them more durable and long-lasting compared to conventional refractories.
Q:How do monolithic refractories resist chemical corrosion in iron and steel applications?
Due to their unique characteristics and composition, monolithic refractories demonstrate high resistance to chemical corrosion in iron and steel applications. This resistance is attributed to various factors. One crucial factor is the utilization of top-notch raw materials. Typically, monolithic refractories are crafted from high-alumina or alumina-silica aggregates, which possess excellent resistance to chemical reactions. These aggregates are carefully selected to withstand the harsh conditions encountered in iron and steel applications, including exposure to molten metal, slag, and various chemical compounds. Furthermore, the binders employed in monolithic refractories play a vital role in their resistance to chemical corrosion. Common binders encompass clay, calcium aluminate cement, or colloidal silica. These binders not only hold the refractory materials together but also provide extra protection against chemical attack. They create a dense and impermeable structure, preventing corrosive substances from penetrating the refractory lining. Additionally, monolithic refractories often incorporate additives that enhance their chemical resistance. These additives, comprising antioxidants, anti-spalling agents, and various compounds, further safeguard the refractory lining from chemical attack. They neutralize corrosive elements, inhibit the formation of harmful compounds, and reduce the overall corrosion rate. Moreover, the unique installation method of monolithic refractories also contributes to their resistance to chemical corrosion. Unlike traditional brick refractories, monolithic refractories are installed as a single, continuous lining. This eradicates the need for joints or gaps that could potentially serve as weak points for chemical penetration. The monolithic nature of these refractories ensures a tight and seamless lining, reducing vulnerability to chemical attack. In summary, the combination of high-quality raw materials, effective binders, and beneficial additives, along with the monolithic installation technique, endows monolithic refractories with exceptional resistance to chemical corrosion in iron and steel applications. This resistance enables them to endure the harsh conditions encountered in these industries, ensuring the durability and efficiency of the refractory lining.
Q:What are the key considerations when selecting monolithic refractories for tundish applications?
When selecting monolithic refractories for tundish applications, the key considerations include thermal stability, erosion and corrosion resistance, thermal shock resistance, ease of installation and maintenance, and cost-effectiveness.
Q:How do monolithic refractories perform in blast furnace taphole applications?
Monolithic refractories perform excellently in blast furnace taphole applications due to their high thermal resistance, mechanical strength, and resistance to chemical attack. They are able to withstand the extreme temperatures and abrasive conditions of the blast furnace discharge, ensuring reliable and efficient operation of the taphole. Additionally, monolithic refractories offer easy installation and maintenance, reducing downtime and improving overall productivity in the blast furnace.
Q:What are the main types of monolithic refractories used in the iron and steel industry?
In the iron and steel industry, the primary monolithic refractories used consist of castables, ramming materials, gunning materials, and plastic refractories. Castables, a type of refractory material, can be poured or cast into different shapes and sizes. They're composed of refractory aggregates, binders, and additives. Castables are commonly utilized in ladles, tundishes, and blast furnaces due to their exceptional thermal shock resistance and high strength. Ramming materials, also known as ramming mixes, find application in lining furnace bottoms and other high-temperature settings. They typically comprise refractory aggregates and a bonding agent, allowing them to be compacted or rammed into place. Ramming materials exhibit good resistance to thermal cycling and can endure high temperatures. Gunning materials are specifically designed to be sprayed or gunned onto the refractory surface using a high-pressure gunning machine. They serve the purpose of repairing and patching damaged or eroded refractory linings. Gunning materials are typically comprised of refractory aggregates, binders, and additives. They provide excellent adhesion and are commonly employed in kilns, converters, and electric arc furnaces. Plastic refractories, a type of monolithic refractory, can be molded or formed into different shapes. They're composed of refractory aggregates, plasticizers, and binders. Plastic refractories are used to line various equipment and structures in the iron and steel industry, such as boilers, incinerators, and chimneys. They exhibit good resistance to thermal shock and can be easily installed manually or with a trowel. In summary, these various types of monolithic refractories play a vital role in the iron and steel industry by providing high-temperature resistance, thermal insulation, and durability to the equipment and structures utilized in the production process.
Q:How do monolithic refractories perform in high-temperature environments?
Due to their unique characteristics, monolithic refractories are highly effective in high-temperature environments. Unlike traditional refractories made of multiple bricks or tiles, these refractories are composed of a single, continuous composition. This monolithic structure offers several advantages when it comes to performance in high-temperature conditions. First and foremost, monolithic refractories exhibit excellent thermal shock resistance. They can endure rapid temperature changes without cracking or spalling. While high temperatures can impose significant stress on materials, the monolithic structure allows for better expansion and contraction, minimizing the risk of damage. Furthermore, monolithic refractories possess high resistance to chemical attack. In high-temperature environments, aggressive chemical agents are often present, which can corrode and erode traditional refractory materials. However, the monolithic composition is typically designed to be chemically inert, creating a protective barrier against these corrosive elements. Moreover, monolithic refractories offer superior strength and durability at high temperatures. Their single composition ensures a dense and compact structure, reducing the likelihood of cracking or breaking under extreme thermal conditions. This strength enables them to maintain their integrity and performance even in the most demanding environments. Additionally, monolithic refractories can be easily installed and repaired. Unlike traditional refractories that demand precise brick or tile placement, monolithic materials can be poured or sprayed into place, adapting to any shape or size. This flexibility expedites installation, making it more cost-effective and reducing downtime and maintenance costs. Overall, monolithic refractories excel in high-temperature environments due to their thermal shock resistance, chemical inertness, durability, and ease of installation. Their capacity to withstand extreme heat and harsh conditions makes them the preferred choice for industries such as steel, cement, glass, and petrochemicals, where high temperatures are prevalent.
Q:What are the main factors affecting the abrasion resistance of monolithic refractories?
The main factors affecting the abrasion resistance of monolithic refractories are the composition of the refractory material, the size and shape of the abrasive particles, the velocity and angle of impact of the abrasives, and the temperature and pressure conditions in the application environment.
Q:What are the advantages of using low-cement castables in the iron and steel industry?
There are numerous benefits associated with the utilization of low-cement castables in the iron and steel sector. To begin with, low-cement castables necessitate less water compared to traditional castables. Consequently, the installation process becomes faster and more efficient due to the reduced water requirement. Moreover, the lower water content results in enhanced strength development and shorter drying time, facilitating faster turnaround times during production. In addition, low-cement castables exhibit exceptional resistance to extreme temperatures and thermal shocks. Given the high temperatures prevalent in the iron and steel industry, these castables possess excellent refractory properties that enable them to withstand such harsh conditions. Consequently, the refractory lining enjoys an extended service life, reducing the need for frequent repairs or replacements. Furthermore, low-cement castables demonstrate remarkable mechanical strength and abrasion resistance. Given the nature of the iron and steel sector, where heavy materials and abrasive substances are handled, the refractory lining is susceptible to wear and tear. However, low-cement castables are capable of enduring these mechanical stresses, thereby enhancing the durability and longevity of the lining. Moreover, low-cement castables possess low porosity and high density, resulting in reduced permeability. Consequently, they exhibit high resistance to alkali attacks, chemical corrosion, and slag penetration, all of which are common challenges faced in the iron and steel industry. By employing low-cement castables, the risk of refractory failure caused by these corrosive elements is minimized. Lastly, low-cement castables contribute to improved energy efficiency. Their lower thermal conductivity ensures that less heat is conducted through the refractory lining, leading to reduced heat losses. This, in turn, translates into energy savings, as less heat is wasted and more heat is retained within the system. The significance of this advantage is particularly evident in the iron and steel industry, where energy costs can be substantial. In conclusion, the use of low-cement castables in the iron and steel sector offers a multitude of advantages, including reduced water requirement, superior thermal resistance, enhanced mechanical strength, improved resistance to chemical corrosion, and increased energy efficiency. These benefits contribute to overall cost savings, heightened productivity, and improved operational performance in the iron and steel manufacturing process.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords