Bearing Steel GCr15

Ref Price:
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50MT m.t.
Supply Capability:
500000tons/YEAR m.t./month
  • OKorder Service Pledge
  • Quality Product
  • Order Online Tracking
  • Timely Delivery
  • OKorder Financial Service
  • Credit Rating
  • Credit Services
  • Credit Purchasing

Add to My Favorites

Follow us:

Specifications of Bearing Steel GCr15

1. Dimensional sizes: Thickness: 14~100mm.Length:3000~5800mm,Diameter :14-500mm

2.Chemical composition:

 

C

Si

Mn

Cr

Ni

Cu

Equal or less than

0.95-1.05

0.15-0.35

0.20-0.40

Cr:1.30-1.65

0.30

0.25

 

 

 

 

 

 

3. Grade: SAE51200/ GCr15 / 100cr6

4. Heat Treatment:

Soft annealing: heat to 680-720°C, cool slowly.

Hardness after annealing: Max. 241 HB

Hardening: 820 - 850 °C

Normalizing temperature: 840-880°C

Tempering: 540-680°C

5. Surface requirements: Black, grinding, bright, polish

6. Characters:

1) Comprehensive properties

2) Good performance in cutting and processing after spheroids annealing

3) High hardness and homogenization after quenching and tempering

4) High abrasive resistance and fatigue resistance

7. Payment terms: T/T or L/C at sight

 

Usage & Applications of Bearing Steel GCr15

Our products have been used in all kinds of areas, such as aviation, aerospace, navigation, nuclear, energy, chemical industry, electronic information, petrochemical, automotive, instrument and meter, Communication ,transportation, and medical instruments, etc. Bearing ring,steel rolling mill ,machinery, 100Cr6 bearing steel ball is widely used in high-speed and low-noise bearing, bicycle, motorcycle, automobile, bags, electronics.

 

Packaging & Delivery of Bearing Steel GCr15

Mark: Heat No. will be cold stamped and Steel grade, diameter (mm), length (mm), and the manufacturer LOGO and weight (kg) is painted.

Standard seaworthy packing or as customer required

Delivery time: Within 30 days after order is confirmed.

steel bearing

 

bearing steel

 

Note:

1. According to national standard (GB) for our products, if not, supply according to national standards (GB) or agreement.

2. We can not only provide electric furnace +LF+VD and electro-slag re-melting (ESR)steel forging materials, but also forging products of piece, bar, etc.

3. Our company is equipped with roll equipment and can provide our customers with roll billets or finished.

4. Please send us your detailed specifications when inquire. We will reply to you ASAP.

 

 

Q:
There are several different low-temperature grades of special steel that are designed to withstand extreme cold conditions. Some of the commonly used grades include: 1. Austenitic Stainless Steel: This grade of steel, such as 304 and 316, is known for its excellent corrosion resistance and high strength at low temperatures. It is commonly used in cryogenic applications, such as LNG storage tanks and cryogenic piping. 2. Ferritic Stainless Steel: Ferritic stainless steel grades like 410 and 430 are suitable for low-temperature applications due to their good ductility and resistance to stress corrosion cracking. They are often used in cryogenic environments where high strength and resistance to embrittlement are required. 3. Martensitic Stainless Steel: Martensitic stainless steel, such as 410 and 420, exhibits high strength and good toughness even at low temperatures. It is commonly used in applications that require high wear resistance and strength, such as valves and turbine blades in cryogenic systems. 4. Duplex Stainless Steel: Duplex stainless steel grades like 2205 and 2507 offer a combination of high strength, excellent corrosion resistance, and good toughness at low temperatures. They are widely used in offshore and subsea applications where low-temperature performance and resistance to pitting and crevice corrosion are critical. 5. Nickel-Based Alloys: Nickel-based alloys, such as Inconel and Hastelloy, are known for their exceptional corrosion resistance and high strength at both low and high temperatures. These alloys are extensively used in cryogenic applications, including liquefied natural gas (LNG) processing plants, as well as aerospace and chemical processing industries. Each of these low-temperature grades of special steel offers unique properties and advantages, making them suitable for various applications in extreme cold conditions. The selection of the appropriate grade depends on factors like the specific temperature range, required corrosion resistance, strength requirements, and environmental conditions.
Q:
Special steel contributes to automotive safety in several ways. Firstly, it provides increased strength and durability to the vehicle's structure, which helps to absorb and distribute impact forces during collisions, thus protecting the occupants. Secondly, special steel is often used for manufacturing components like airbags, seat belts, and anti-lock braking systems, ensuring their reliability and effectiveness in critical situations. Additionally, this type of steel can enhance the vehicle's resistance against corrosion, reducing the risk of structural damage over time. Overall, special steel plays a vital role in enhancing the safety standards of automobiles.
Q:
There are several methods available for improving the impact resistance of special steel. These methods can be broadly categorized into heat treatment, alloying, and surface treatments. 1. Heat Treatment: One of the most common methods for improving impact resistance is heat treatment. This involves subjecting the steel to controlled heating and cooling processes to alter its microstructure. The two main heat treatment processes used for improving impact resistance are tempering and quenching. Tempering involves heating the steel to a specific temperature and then cooling it slowly. This process helps to relieve internal stresses and improve toughness. Quenching, on the other hand, involves rapidly cooling the steel after heating it to a high temperature. This process results in a hardened microstructure, enhancing the impact resistance. 2. Alloying: Another method for improving the impact resistance of special steel is through alloying. By adding certain elements to the base steel, the properties can be enhanced. For example, adding elements such as manganese, nickel, or chromium can improve the toughness and impact resistance of the steel. These alloying elements alter the steel's microstructure, resulting in increased strength and resistance to deformation. 3. Surface Treatments: Surface treatments are used to improve the impact resistance of special steel by providing a protective layer on the surface. One commonly used surface treatment is case hardening, which involves introducing carbon or nitrogen into the surface layer of the steel. This process creates a hard outer layer while retaining a tough core, enhancing the impact resistance. Another surface treatment method is shot peening, which involves bombarding the steel surface with small metal or ceramic particles under high pressure. This process induces compressive stresses in the surface layer, improving the fatigue resistance and impact resistance of the steel. In conclusion, the different methods for improving the impact resistance of special steel include heat treatment, alloying, and surface treatments. These methods can be employed individually or in combination to enhance the mechanical properties of the steel, making it more resistant to impact and deformation.
Q:
Special steel contributes to the ductility of products by offering enhanced mechanical properties such as higher tensile strength and improved toughness. This type of steel is specially formulated with alloying elements that promote grain refinement and uniform microstructure, allowing the material to withstand greater deformation without breaking or cracking. Additionally, special steel often undergoes specific heat treatment processes that further enhance its ductility, ensuring that the final products can be easily shaped, bent, or stretched without compromising their structural integrity.
Q:
A standardized test called a tensile test is typically used to measure the tensile strength of special steel. This test involves subjecting a sample of the steel to increasing tension until it breaks. The test measures the applied force and records the corresponding deformation or elongation of the sample. To calculate the tensile strength, the maximum force applied to the sample is divided by its cross-sectional area before the test. This measurement indicates the maximum stress the steel can handle before failing or breaking. Determining the tensile strength is crucial in assessing the suitability of special steel for different applications and ensuring the material's structural integrity and reliability.
Q:
Special steel has various applications in the medical field due to its unique properties and characteristics. One of the primary applications of special steel in the medical field is in the manufacturing of surgical instruments. Special steel, such as stainless steel, is widely used to produce sharp, durable, and corrosion-resistant surgical instruments like scalpels, forceps, scissors, and surgical needles. These instruments need to be strong enough to withstand repeated use and sterilization without losing their sharpness or integrity, and special steel provides the necessary strength and durability. Another important application of special steel in the medical field is in the production of implants and prosthetics. Special steel alloys, including titanium alloys, cobalt-chromium alloys, and nickel-titanium alloys, are commonly used to manufacture orthopedic implants, dental implants, and various other medical devices. These alloys offer excellent biocompatibility, corrosion resistance, and mechanical strength, making them ideal for long-term implantation in the human body. Additionally, special steel is used in the construction of medical equipment and machinery. Diagnostic machines like MRI scanners and X-ray machines often utilize special steel components due to their magnetic properties and ability to withstand high temperatures. The use of special steel in medical equipment ensures the accuracy, reliability, and safety of these devices. Furthermore, special steel is employed in the manufacturing of medical storage and transportation systems. Steel cabinets, trolleys, and containers are commonly used to store and transport medical supplies, instruments, and samples. Special steel ensures the durability and hygiene of these storage systems, as it is easy to clean, resistant to contamination, and has a long lifespan. In conclusion, the applications of special steel in the medical field are extensive and diverse. From surgical instruments to implants, medical equipment to storage systems, special steel plays a vital role in ensuring the effectiveness, reliability, and safety of medical procedures and treatments. Its unique properties make it an indispensable material in the healthcare industry.
Q:
There are several corrosion protection methods used for special steel, including coating with anti-corrosive paints or sealants, galvanizing with zinc or other metals, applying sacrificial anodes, using corrosion inhibitors, and employing cathodic protection techniques such as impressed current or sacrificial anode systems.
Q:
Special steel, known as alloy steel as well, has unique properties and superior performance, making it widely used in the manufacturing industry for various applications. Different sectors benefit from special steel in the following ways: 1. Automotive Industry: Components like engine parts, gears, axles, and crankshafts heavily rely on special steel due to its high strength, durability, and resistance to wear and corrosion. Its exceptional performance in critical automotive applications makes it the preferred choice. 2. Aerospace Industry: In the aerospace sector, special steel is vital for manufacturing aircraft components such as landing gear, turbine blades, and structural parts. Its high tensile strength, lightweight nature, and ability to withstand extreme temperatures ensure the safety and efficiency of aircraft operations. 3. Construction Industry: The construction sector extensively uses special steel for manufacturing structural elements like beams, columns, and reinforcement bars. Its superior strength, ductility, and resistance to external forces guarantee the structural integrity and safety of buildings, bridges, and other infrastructure projects. 4. Oil and Gas Industry: The oil and gas industry relies heavily on special steel for manufacturing pipelines, drill bits, valves, and other equipment. Its high resistance to corrosion, pressure, and extreme temperatures make it suitable for handling the harsh operating conditions encountered in oil and gas exploration, extraction, and transportation. 5. Tool and Die Making: Special steel is commonly employed in tool and die making due to its excellent hardness, toughness, and wear resistance. Various industries, including automotive, aerospace, and consumer goods manufacturing, utilize special steel for manufacturing cutting tools, molds, dies, and punches. 6. Medical Industry: The medical industry utilizes special steel for manufacturing surgical instruments, implants, and medical devices. Its biocompatibility, corrosion resistance, and sterilizability ensure the safety and effectiveness of medical tools and implants. These examples represent only a fraction of the applications of special steel in the manufacturing industry. Its versatility, reliability, and performance contribute to the advancement and growth of various manufacturing processes in numerous sectors.
Q:
There are several standards and specifications for special steel, which vary depending on the specific type and application of the steel. Some common standards include AISI (American Iron and Steel Institute), ASTM (American Society for Testing and Materials), EN (European Norm), and JIS (Japanese Industrial Standards). These standards define the chemical composition, mechanical properties, and manufacturing processes required for special steel to meet certain quality and performance standards. Additionally, there may be specific specifications for different industries or applications, such as aerospace, automotive, or construction, that further define the requirements for special steel.
Q:
Special steel can be annealed using various methods, each with its own objectives and outcomes. Some commonly employed techniques include the following: 1. Full annealing: To achieve maximum softness and enhanced ductility, the steel is heated above its critical temperature and held there for a specific duration. It is then gradually cooled to room temperature. This process facilitates easier machining and manipulation of the steel. 2. Isothermal annealing: After heating the steel above its critical temperature, it is promptly transferred to a furnace or chamber where it is maintained at a constant temperature. This controlled cooling results in a uniform and fine-grained microstructure. Isothermal annealing is particularly beneficial for complex-shaped parts, minimizing distortion and improving dimensional stability. 3. Spheroidize annealing: This technique is commonly employed for high-carbon steels. The steel is heated to a temperature slightly below its critical temperature and kept there for an extended period. This encourages the formation of spheroidized carbides, enhancing machinability and reducing brittleness. 4. Process annealing: Cold-worked steel undergoes this method to alleviate internal stresses and decrease hardness. The steel is heated below its critical temperature and then cooled in still air. Process annealing restores ductility and enhances formability. 5. Stress-relief annealing: Residual stresses resulting from welding or machining can be relieved using this method. The steel is heated below its critical temperature and then slowly cooled. Stress-relief annealing minimizes distortion and prevents cracking. It is crucial to consider factors such as steel composition, desired mechanical properties, and intended application when selecting the appropriate annealing method for special steel.
REDMETAL,a well-known enterprise specializing in the production and sales of spring steel and bearing steel. Since the establishment of our company, we have been aimed to provide the customers with qualify and cheap product and the satisfatory service.

1. Manufacturer Overview

Location Jiangsu, China
Year Established 1990
Annual Output Value Above US$ 20 Million
Main Markets Mid East; Eastern Europe; North America
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Shanghai
Export Percentage 20% - 30%
No.of Employees in Trade Department 21-50 People
Language Spoken: English; Chinese
b)Factory Information  
Factory Size: Above 100,000 square meters
No. of Production Lines 1
Contract Manufacturing OEM Service Offered;
Product Price Range High; Average

Send your message to us

This is not what you are looking for? Post Buying Request