• ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar System 1
  • ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar System 2
  • ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar System 3
  • ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar System 4
  • ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar System 5
  • ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar System 6
ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar

ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
6-34mm
Width:
6-34mm
Length:
12m
Outer Diameter:
6-34mm
Net Weight:
10kg
Packaging:
seaworkthy packaging

ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar

Details of  the ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar

Standard & Grade:GB1499-98 : HRB335,HRB400,HRB500
BS4449-1997 : GR460,GR500
CAN/CSA-G30.18-M92 : 400W
ASTM A615 : Gr.40, Gr.60
Diameter:6mm;8mm;10mm;12mm;14mm;16mm;18mm;20mm;22mm;25mm;28mm;30mm;32mm;35mm;40mm
Length:6m,9m,12m
Packing:Bundle packing
Origin:China
Application:Construction,Road,Machinery processing,Welding fields.
Delivery time:10-25 days
Shipment:By bulk vessel or Container
Documents:Mill Test Certificate,Commercial Invoice,Packing List,Certificate of Origin

 

Company Introduction  of  the ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

 

ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar

ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar

Packaging & Delivery of the ASTM A706, 460B,500B,GR40,GR50 Deformed Steel Bar

 

Packaging DetailSea worthy packing /as per customer's packing instruction
Delivery Detail15 ~ 40 days after receiving the deposit

FAQ

 

Are you a trading company or manufacturer?Manufacturer
What’s the MOQ?1000m2 
What’s your delivery time? 15-20 days after downpayment received
Do you Accept OEM service?Yes
what’s your delivery terms?FOB/CFR/CIF
What's the Payment Terms?30% as deposit,70% before shipment by T/T
Western Union acceptable for small amount.
L/C acceptable for large amount.
Scrow ,Paybal,Alipay are also ok 
Why  choose  us?Chose happens because of quality, then price, We can give you both.
Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.
What's your available port of Shipment?Main Port, China
What’s your featured  services?Our service formula: good quality+ good price+ good service=customer's trust
Where are your Market?Covering more than 160 countries in the world

 

 

Q:What are the common mistakes to avoid when installing steel rebars?
When installing steel rebars, there are several common mistakes that should be avoided to ensure a successful and safe installation: 1. Improper placement: One of the most common mistakes is placing the rebars in the wrong location. It is essential to follow the engineering or construction drawings precisely to ensure accurate placement. Any deviation from the specified location can compromise the structural integrity of the reinforced concrete. 2. Insufficient cover: Another mistake is not providing enough concrete cover over the rebars. The cover serves as a protective layer, preventing the rebars from corrosion and providing fire resistance. Inadequate cover can lead to premature deterioration and structural failure over time. 3. Inadequate bar support: Proper support for the rebars is crucial to maintain their position during the concrete pouring process. Insufficient support can cause the rebars to sag or move, resulting in an uneven distribution of steel reinforcement, which can compromise the structural strength of the concrete. 4. Poor alignment and spacing: Rebars should be aligned and spaced correctly according to the design specifications. Improper alignment can lead to congestion, difficulty in pouring concrete, and compromised bond strength between the rebar and concrete. Similarly, incorrect spacing can result in insufficient reinforcement, reducing the overall strength of the structure. 5. Failure to clean and remove rust: Before installation, rebars should be thoroughly cleaned to remove any rust, dirt, or other contaminants. Failure to clean the rebars properly can lead to poor bond strength and increased risk of corrosion, which can weaken the structure over time. 6. Inadequate tying: Tying rebars together with the appropriate wire or connectors is essential to maintain proper alignment and ensure the structural integrity of the reinforced concrete. Neglecting to tie the rebars adequately can result in shifting or movement during the concrete pouring process, leading to compromised structural strength. 7. Lack of supervision and quality control: Finally, a common mistake is the absence of proper supervision and quality control during the installation process. It is crucial to have experienced personnel overseeing the installation to ensure compliance with the design specifications, proper installation techniques, and adherence to safety guidelines. By avoiding these common mistakes, the installation of steel rebars can be carried out effectively, resulting in a strong, durable, and safe reinforced concrete structure.
Q:How are steel rebars inspected for quality on construction sites?
Steel rebars are critical components in construction projects, as they provide reinforcement and strength to concrete structures. Ensuring the quality of steel rebars is crucial to guarantee the safety and durability of the overall construction. To inspect the quality of steel rebars on construction sites, several methods are commonly employed. Visual Inspection: The first and most basic method of quality inspection involves visual examination of the rebars. This includes checking for any visible defects such as cracks, deformations, rust, or surface irregularities. Any rebars with such flaws are immediately identified and rejected. Measurement and Dimensional Checks: Steel rebars need to meet specific dimensional requirements as per project specifications and industry standards. Inspection personnel use measuring tools, such as calipers or tape measures, to verify the length, diameter, and other dimensions of the rebars. Any deviation from the specified tolerances may lead to rejection. Magnetic Particle Testing (MPT): MPT is a non-destructive testing method commonly used to detect surface and near-surface defects in steel rebars. This technique involves magnetizing the rebar and applying ferromagnetic particles, which accumulate at any surface defects or cracks. By carefully inspecting the surface, trained inspectors can identify any areas of concern. Ultrasonic Testing (UT): UT is another non-destructive testing method used for inspecting rebars. It involves the use of ultrasonic waves that are transmitted through the rebar. These waves reflect back differently when encountering any defects, such as voids, cracks, or inclusions. By analyzing the reflected waves, trained technicians can identify and assess the quality of the rebars. Tensile Testing: Tensile strength is a crucial factor in determining the quality of steel rebars. Tensile testing involves pulling a sample rebar until it breaks, measuring the force required to do so. This test helps determine the strength and ductility of the rebar, ensuring it meets the required standards. Chemical Analysis: Steel rebars are often subjected to chemical analysis to ensure they meet the specified composition requirements. Samples are collected from the rebars, and various tests are conducted to determine the chemical composition, including carbon, manganese, and other alloying elements. This analysis helps ensure the rebars possess the necessary properties for the intended application. All these inspection methods are typically conducted by qualified and experienced personnel, such as certified welding inspectors or quality control technicians. By employing these quality inspection procedures, construction sites can ensure that the steel rebars used in their projects meet the required standards, thereby ensuring the safety and longevity of the structures being built.
Q:What is the process of cutting and bending steel rebars on-site?
The process of cutting and bending steel rebars on-site typically involves using specialized tools such as rebar cutters and benders. First, the rebars are measured and marked according to the required lengths and shapes. Then, the rebar cutter is used to cut the rebars to the desired lengths. After that, the rebar bender is employed to bend the rebars into the required shapes, such as 90-degree angles or U-shapes, as per the construction plans. This on-site process allows for precise customization of the rebars to fit the specific construction needs and ensures proper reinforcement of the concrete structures.
Q:Can steel rebars be used in dams and reservoirs?
Yes, steel rebars can be used in dams and reservoirs. Steel rebars are commonly used as reinforcement in concrete structures, including dams and reservoirs, to enhance their strength and durability. The rebars provide added support to the concrete, helping to withstand the immense pressure and weight exerted by the water.
Q:What is the average weight of a steel rebar?
The average weight of a steel rebar can vary depending on its size and length. However, a common average weight for a typical steel rebar is around 0.75 pounds per foot.
Q:Can steel rebars be used in underground parking structures?
Yes, steel rebars can be used in underground parking structures. They are commonly used as reinforcement in concrete to strengthen the structure and increase its load-bearing capacity. Steel rebars provide durability and structural integrity, making them suitable for underground parking structures that require robust support and resistance to corrosion.
Q:Are steel rebars suitable for use in tunnels and underground mines?
Tunnels and underground mines can benefit greatly from the use of steel rebars. These reinforcement bars, also called steel rebars, are commonly utilized in construction due to their strength and durability. In environments where structural integrity is crucial, such as tunnels and underground mines, steel rebars offer the necessary reinforcement to withstand the heavy loads and pressures associated with these settings. Steel rebars possess exceptional tensile strength, enabling them to resist bending and cracking even under high stress. This attribute is particularly important in tunnels and underground mines, where the surrounding rock and soil exert significant pressure on the structure. By reinforcing the concrete or other structural materials with steel rebars, the overall strength and stability of the tunnel or mine are enhanced, mitigating the risk of collapse or damage. Moreover, steel rebars exhibit resistance to corrosion, rendering them suitable for use in underground environments where moisture and chemical exposure are prevalent. Corrosion can weaken reinforcement materials, compromising the safety of the tunnel or mine. Conversely, steel rebars provide long-lasting reinforcement, ensuring the infrastructure's longevity and reliability. Additionally, steel rebars offer convenience in fabrication and installation, making them a practical choice for tunnel and underground mine construction. They can be easily cut and bent into specific shapes and sizes, facilitating customized reinforcement solutions tailored to the unique requirements of each project. This versatility and ease of installation make steel rebars an advantageous option for tunnels and underground mines, which often encounter complex geometries and challenging conditions. In conclusion, steel rebars are an ideal choice for tunnels and underground mines due to their strength, durability, corrosion resistance, and ease of installation. By utilizing steel rebars as reinforcement, these structures can be built to withstand demanding conditions, ensuring the safety of workers and the long-term viability of the infrastructure.
Q:What are the benefits of using stainless steel rebars?
Some benefits of using stainless steel rebars include their high corrosion resistance, durability, and strength. Stainless steel rebars do not rust or corrode like traditional steel rebars, making them ideal for construction projects in areas with high humidity or exposure to corrosive elements. They also have a longer lifespan, reducing the need for frequent replacements and maintenance. Additionally, stainless steel rebars offer better structural integrity and can withstand higher loads, ensuring the longevity and safety of the structures they reinforce.
Q:What is the purpose of ribbing on a steel rebar?
The purpose of ribbing on a steel rebar is to improve the bond between the rebar and the surrounding concrete. Raised deformations, known as ribs, run along the length of the rebar, creating a larger surface area for the concrete to grip onto. This larger surface area enhances the mechanical interlock between the rebar and concrete, resulting in better load transfer and improved structural integrity. Additionally, the ribbing prevents slippage or movement of the rebar within the concrete, ensuring that the reinforcement remains in its intended position, even under heavy loads or seismic activity. In summary, the ribbing on a steel rebar is vital for enhancing the performance and durability of reinforced concrete structures.
Q:Can steel rebars be used in structures with limited construction technology?
Yes, steel rebars can be used in structures with limited construction technology. Steel rebars are commonly used as reinforcement in concrete structures to enhance their strength and durability. They are versatile and can be easily incorporated into various construction techniques, making them suitable for structures with limited technology. Additionally, steel rebars offer superior resistance to load and can withstand harsh environmental conditions, ensuring the structural integrity of the building even with limited construction technology.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords