• Angle Steel Hot Rolled High Quality ASTM A36 System 1
  • Angle Steel Hot Rolled High Quality ASTM A36 System 2
  • Angle Steel Hot Rolled High Quality ASTM A36 System 3
Angle Steel Hot Rolled High Quality ASTM A36

Angle Steel Hot Rolled High Quality ASTM A36

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
20000000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Angle Steel Hot Rolled High Quality ASTM A36 at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc 

Product Advantages:

OKorder's Steel Angle Steel Hot Rolled High Quality ASTM A36 are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195 – 235

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

Sizes:   25mm-250mm


a*t


25*2.5-4.0

70*6.0-9.0

130*9.0-15


30*2.5-6.6

75*6.0-9.0

140*10-14


36*3.0-5.0

80*5.0-10

150*10-20


38*2.3-6.0

90*7.0-10

160*10-16


40*3.0-5.0

100*6.0-12

175*12-15


45*4.0-6.0

110*8.0-10

180*12-18


50*4.0-6.0

120*6.0-15

200*14-25


60*4.0-8.0

125*8.0-14

250*25















 

FAQ:

Q1:Would you please tell me the length of angle steel?

A1: 6m and 12m is OK for us.

Q2: How soon can we receive the product after purchase?

A2: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q3: What makes stainless steel stainless?

A3: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Angle Steel Hot Rolled High Quality ASTM A36

Angle Steel Hot Rolled High Quality ASTM A36


Q:How do steel angles contribute to the overall stiffness of a structure?
Steel angles contribute to the overall stiffness of a structure by providing stability and resistance to bending or twisting forces. These angles are commonly used in construction to reinforce joints, corners, and connections, effectively distributing loads and enhancing the structural integrity. Their shape and rigidity help prevent deflection and ensure that the structure remains stable and capable of withstanding external pressures or movements.
Q:Where can steel angles be purchased?
Steel angles can be purchased from various sources, including steel suppliers, metal fabrication companies, hardware stores, and online marketplaces such as Amazon or Alibaba.
Q:How do steel angles differ from steel channels?
Steel angles and steel channels differ in their structural shape. Steel angles have an L-shaped cross-section, consisting of two legs that are perpendicular to each other. On the other hand, steel channels have a U-shaped cross-section, with a flat bottom and two flanges on the sides. These different shapes make steel angles suitable for providing structural support and stability in various applications, while steel channels are often used for framing and reinforcement purposes.
Q:What are the common tolerances for steel angles?
The common tolerances for steel angles typically include variations in dimensions such as length, width, and thickness. These tolerances can vary depending on the specific industry standards, but commonly accepted tolerances for steel angles are generally within a few millimeters or fractions of an inch.
Q:What are the common methods of joining steel angles together?
There exist various methods for connecting steel angles together. 1. Welding is a well-liked technique employed to join steel angles. This involves the melting of the angle edges, followed by cooling and solidification to establish a robust bond. Welding can be executed using diverse approaches like arc welding, MIG welding, or TIG welding. 2. Bolting is yet another frequent method used for joining steel angles. It entails using bolts, nuts, and washers to secure the angles in place. This technique permits easy dismantling and reassembly, if necessary. Bolts are typically utilized in combination with gusset plates or brackets to provide added strength and stability. 3. Riveting is a conventional method of connecting steel angles. It necessitates the usage of a rivet, a cylindrical metal pin, to hold the angles firmly. The rivet is inserted into pre-drilled holes in the angles and then deformed on one end to create a head, thereby securing the angles together. 4. Adhesive bonding is a technique that utilizes a specialized adhesive to connect steel angles. The adhesive is applied between the angles, and pressure is exerted to ensure a sturdy bond. Adhesive bonding is often employed in situations where a clean and visually appealing joint is desired. 5. Mechanical fasteners, such as screws, nails, or self-tapping screws, can also be employed to join steel angles. These fasteners are inserted into pre-drilled holes to establish a secure connection. However, they may not possess the same level of strength as other methods like welding or bolting. When selecting the appropriate method for joining steel angles, it is crucial to consider the specific requirements of the application, including load-bearing capacity, aesthetics, and ease of disassembly.
Q:Can steel angles be used in framing?
Indeed, framing can incorporate steel angles. In construction, steel angles are frequently employed to provide structural support and reinforcement. These angles possess adaptability, allowing for simple welding, bolting, or screwing together to construct frames suited for diverse purposes. By incorporating steel angles, structures gain both strength and stability, rendering them suitable for framing walls, ceilings, floors, and other structural elements. Moreover, steel angles are accessible in various sizes and thicknesses, permitting flexibility in design and construction. Ultimately, steel angles are a favored option in framing due to their enduring nature, versatility, and structural characteristics.
Q:Are steel angles resistant to chemical exposure?
Steel angles, in general, exhibit resistance to chemical exposure. Steel is renowned for its robustness and durability, rendering it less prone to harm caused by chemical substances. Nevertheless, the extent of this resistance may differ based on the particular chemical and the type of steel employed. When exposed for extended periods to aggressive chemicals or in highly corrosive surroundings, certain variants of steel angles may necessitate supplementary protective coatings or treatments to augment their resistance. To ensure the selection of the most suitable steel angles for the intended chemical exposure, it is always advisable to seek guidance from experts or consult specific material specifications.
Q:What are the different types of connections used for steel angles in architectural applications?
There are several different types of connections used for steel angles in architectural applications. Some of the common types include: 1. Welded connections: Welding is a popular method for connecting steel angles. It involves melting the base metals and fusing them together using heat. Welded connections provide excellent strength and rigidity, making them suitable for heavy-duty applications. 2. Bolted connections: Bolted connections involve using bolts, nuts, and washers to secure the steel angles together. This method allows for easy assembly and disassembly, making it a preferred choice for situations requiring flexibility or future modifications. 3. Riveted connections: Riveting involves using metal pins called rivets to join the steel angles. This method provides a strong and durable connection, particularly suitable for structures subjected to high loads or vibrations. 4. Adhesive connections: Adhesive connections use industrial adhesives to bond the steel angles together. This method is often used in conjunction with other connection types to provide additional strength and resistance against shear forces. 5. Slot and tab connections: Slot and tab connections involve creating slots or tabs on the steel angles, allowing them to interlock and form a secure connection. This method is commonly used for lightweight architectural applications where aesthetic considerations are important. Each type of connection has its advantages and disadvantages, and the choice depends on various factors such as the specific architectural application, load requirements, ease of installation, and aesthetic considerations. Architects and engineers carefully consider these factors to determine the most suitable type of connection for steel angles in each project.
Q:Can steel angles be used in architectural or decorative applications?
Yes, steel angles can be used in architectural or decorative applications. They are versatile and can be shaped and finished in various ways to create unique and aesthetically pleasing designs. Steel angles are commonly used for structural support, but they can also be utilized as decorative accents, such as in railings, door frames, or furniture.
Q:How do steel angles contribute to the energy efficiency of a building?
There are multiple ways in which steel angles can enhance the energy efficiency of a building. To begin with, steel angles are commonly utilized as structural components during the construction of buildings. Their presence provides strength and support to the building's framework, enabling the incorporation of larger windows and open floor plans. This facilitates the entry of natural daylight, thereby diminishing the need for artificial lighting during the daytime and subsequently reducing energy usage. Moreover, steel angles have the ability to contribute to the creation of energy-efficient building envelopes. By integrating steel angles into the construction of walls, roofs, and floors, the occurrence of thermal bridging can be minimized. Thermal bridging refers to the escape or entry of heat in a building due to materials with high thermal conductivity, such as concrete or wood. By utilizing steel, which possesses low thermal conductivity, the transfer of heat is reduced, leading to an improvement in the overall thermal performance of the building envelope. Furthermore, steel angles can be employed for the installation of energy-conserving systems and equipment. For example, they can provide support for solar panels, which generate clean and renewable energy. Additionally, steel angles can be utilized in the installation of HVAC systems, promoting efficient air circulation and distribution throughout the building. By incorporating steel angles into these applications, the energy efficiency of the building is enhanced, resulting in decreased energy consumption and lower utility bills. To summarize, the utilization of steel angles significantly contributes to the promotion of energy efficiency in buildings. They provide structural integrity, help minimize thermal bridging, and support the installation of energy-conserving systems. By incorporating steel angles into the design and construction of a building, energy consumption is reduced, resulting in a more sustainable and cost-effective built environment.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords