Amino Trimethylene Phosphonic Acid Best Quality

Ref Price:
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
6000 m.t./month

OKorder Service Pledge

Quality Product

Order On-line Tracking

Timely Delivery

OKorder Service Pledge

Credit Rating

Credit Services

Credit Purchasing

Share to:

Product Description:

Product Description:

Amino tris(methylene phosphonic acid)  / Amino Trimethylene Phosphonic Acid/ ATMP / 6419-19-8 /  C3H12NO9P3

CAS No.  6419-19-8

Molecular Formula:   N(CH2PO3H2)3                

Molecular weight:  299.05

Structural Formula:

Properties:

ATMP has excellent chelation, low threshold inhibition and lattice distortion ability. It can prevent scale formation, calcium carbonate in particular, in water system. ATMP has good chemical stability and is hard to be hydrolyzed in water system. At high concentration, it has good corrosion inhibition.

ATMP is used in industrial circulating cool water system and oilfield water pipeline in fields of thermal power plant and oil refinery plant. ATMP can decrease scale formation and inhibit corrosion of metal equipment and pipeline. ATMP can be used as chelating agent in woven and dyeing industries and as metal surface treatment agent.

The solid state of ATMP is crystal powder, soluble in water, easily deliquescence, suitable for usage in winter and freezing districts. Because of its high purity, it can be used in woven & dyeing industries and as metal surface treatment agent.

Specification:

ItemsIndex
StandardSolid
AppearanceClear, Colorless to pale yellow aqueous solutionWhite crystal powder
Active acid %50.0-51.095.0min
Chloride (as Cl-)%1.0 max1.0 max
pH value (1% solution)2.0 max2.0 max
Fe,mg/L10.0max20.0max
Density (20°C)g/cm31.31-1.35-
Colour APHA (Hazen)30.0max-

Application range&using method:

ATMP is usually used together with other organophosphoric acid, polycarboxylic acid and salt to built all organic alkaline water treatment agent. ATMP can be used in many different circulating cool water system. The recommended dosage is 5-20mg/L. As corrosion inhibitor, The recommended dosage is 20-80mg/L.

Package and Storage:

ATMP liquid: Normally In 30kg or 250kg net Plastic Drum;ATMP solid: 25kg inner liner polyethylene (PE) bag, outer plastic woven bag, or confirmed by clients request.Storage for ten months in room shady and dry place.


Safety Protection:

ATMP is Acidity, Avoid contact with eye and skin, once contacted, flush with water.

Shipping Date:  Within 7-10 workdays after receiving your deposit.


Our Service:

Own Lab and joint venture factory.

Superb r&d team;Safety standardization production.

Rich experience in export and strong logistical support.

Good relationship with many large domestic pharmaceutical factory.

Perfect service, perfect supply chain.




Send a message to us:

Remaining: 4000 characters

- Self introduction

- Required specifications

- Inquire about price/MOQ

Q:Chemical reaction in the presence of catalyst for the reaction are carried out a high life
Theoretically are carried out, but some of the reaction is relatively slow, so we classified it as non-response, the catalyst is only to speed up or slow down the reaction rate of the reaction itself does not affect the reaction. I'm on high school.
Q:Please help - question about catalysts !?
they reduce the activation energy of a specific chemical reaction, which in turn reduces the temperature at which a reaction will occur at any significant rate (and therefore fuel costs) while generally making the reaction occur faster. In general, if you can catalyze a reaction, you can get away with using less robust equipment because you don't need as much energy.
Q:What kind of chemical reaction requires a catalyst?
For example, the system of ammonia, S02 oxidation into SO3
Q:What is the microcosmic principle of the catalytic reaction in the chemical reaction?
It is actually directly involved in the reaction, but, after the reaction, it has become a product out, the equivalent of no response
Q:Is it possible for the different chemical reactions to have the same catalyst?
Right, think about the catalysis of biological enzymes
Q:What happens to the rate of a reaction when the concentration of a catalyst is doubled?
A catalyst speeds up a chemical reaction by providing an alternate reaction pathway with a lower activation energy, thus increasing the number of collisions that can result in the formation of product. When the catalyst is a reactant in the rate determining step, and the reaction is first order in the catalyst, then a doubling of the concentration will double the rate. But if the rate determining step which includes the catalyst is not first order, then doubling the concentration won't double the rate. Then there is the case of a heterogeneous catalyst in which the reaction is essentially zero order in the catalyst. The amount of catalyst won't affect the speed of the reaction beyond the initial increase. The mere fact that the catalyst is present speeds up the reaction.
Q:Why are transition metals more likely to be catalysts?
transition okorder.com/... for ex-- X (one reactant) + catalyst(transition element) ------X.catalyst(intermediate unstable compound) X.catalyst + Y (other reactant) --------XY(product) + catalyst how the change in oxidation state of transition elements helps the reacton through the formation of intermediates may be seen from reaction in between SO2 and O2 to form SO3 in presence of V2O5 ... V2O5 + SO2 ------V2O4 + SO3 2V2O4 + O2 ------2V2O5 in the above reaction vanadium changes its oxidation state from +5 to +4 and again to +5.. another example is reaction in between iodide and persulphate ions in presence of Fe(III) as catalyst... 2I(-) + S2O8(2-) ---------I2 + 2SO4(2-) (Fe(III) is present as catalyst) the reaction is believed to take place as follows: 2Fe(3+) + 2I(-) ------2Fe(2+) + I2 2Fe(2+) + S2O8(2-) ------2Fe(3+) + 2SO4(2-) (3)in number of cases transition elements provide a suitable large surface area with free valencies on which reactants are absorbed ...as a result concentration of reactants on surface of catalysts increases..hence rate of reaction increases...this is known as adsorption theory.... according to adsorption theory : there are free valencies on surface of solid transition metals because of the incomplete d-subshelll.. so the mechanism of catalysis involve followin five steps: (1) diffusion of reactant molecules towards surface of catalyst... (2) adsorption of reactant molecules on surface of catalyst by forming loose bonds with catalyst due to free valencies... (3)occurence of chemical reactions between reactant and catalyst forming an intermediate.. (4)desorption of product molecules from surface due to its lack of affinity for the catalyst surface thereby making the surface free for fresh adsorption of reactant molecules... (5)diffusion of product molecules away from surface of catalyst...
Q:What are the requirements for the catalyst for the chemical industry?
Generally find a few, according to the cost and cost of cost, choose cost-effective
Q:What is a catalyst?
In industrial production, the large amount of catalyst used frequently, the catalyst that does not change theoretically may sometimes change into another substance, which is the so-called poison of catalyst,
Q:Why is the catalyst?
Enzymes, refers to the biocatalytic function of the polymer material, in the enzyme catalytic reaction system, the reactant molecules known as the substrate, the substrate catalyzed by the enzyme into another molecule. Similar to other non-biocatalysts, the enzyme changes the reaction rate by adjusting the Gibbs free energy of the chemical reaction, and most of the enzyme can increase the rate of its catalytic reaction by a million times; in fact, the enzyme is provided with another The activation energy requires a lower route so that more reactive particles produce more effective collisions to produce more kinetic energy. According to the first law of thermodynamics, the kinetic energy obtained by the collision can accelerate the reaction rate by transformation. The enzyme as a catalyst itself is not consumed in the reaction process nor does it affect the chemical equilibrium of the reaction.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range