• Aluzinc Galvanized Steel Coils (for Ventilated Duct) System 1
  • Aluzinc Galvanized Steel Coils (for Ventilated Duct) System 2
  • Aluzinc Galvanized Steel Coils (for Ventilated Duct) System 3
  • Aluzinc Galvanized Steel Coils (for Ventilated Duct) System 4
  • Aluzinc Galvanized Steel Coils (for Ventilated Duct) System 5
  • Aluzinc Galvanized Steel Coils (for Ventilated Duct) System 6
Aluzinc Galvanized Steel Coils (for Ventilated Duct)

Aluzinc Galvanized Steel Coils (for Ventilated Duct)

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Coil
Standard:
AISI,ASTM,JIS,API,BS,DIN,GB,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
2MT
Length:
12m
Thickness:
0.2 - 2.0MM

Aluzinc Galvanized Steel Coils (for Ventilated Duct)


Description of Aluzinc Galvanized Steel Coils (for Ventilated Duct)

Product

PPGI/PPGL

Capacity

5,000 tons/month

Base material

Hot dipped galvanized steel

Thickness

0.2-2.0mm

Width

600-1250mm(according to your need)

Coil Weight

3-6tons

Quality

SGCC, DX51D

Color

RAL No. or customers samples’ color

Zinc-coating

30g/m2-180g/m2

Coil ID

508mm/610mm

Technique

Cold rolled—hot dipped galvanized—color coated

Painting

Top painting:15~25μm

Back painting: 6~10μm

Tolerance

Thickness: +/-0.02mm

Width:+/-2mm

Shipment time

within 15-45 workdays

Payment

 T/T, L/C at sight 

Packing

Standard export packing

The special order can be negotiated.


Application of Aluzinc Galvanized Steel Coils (for Ventilated Duct)

APPLICATION OF OUR PREPAINTED STEEL

Construction

Outside

Workshop,agricultural   warehouse,residential precast unit

corrugated roof,roller   shutter door,rainwater drainage pipe,retailer booth

Inside

Door,doorcase,light   steel roof stucture,folding screen,elevator,stairway,ven gutter,Construction Wall

Electrical applicance 

Refrigerator,washer,switch   cabnet,instrument cabinet,air conditioning,micro-wave owen,bread maker

Fuiniture

Central   heating slice,lampshade,chifforobe,desk,bed,locker,bookself

Carrying trade

Exterior   decoration of auto and train,clapboard,container,isolation lairage,isolation   board

Qthers 

Writing   panel,garbagecan,billboard,timekeeper,typewriter,instrument panel,weight   sensor,photographic equipment


Products Show of Aluzinc Galvanized Steel Coils (for Ventilated Duct)

PPGI Coils from Tianjin Steel Material Mills

Product Advantages

1.With nearly 20 years   experience in prepainted steel, accommodate   different marketdemands.

2.'Quality first, service first' is our business   aim; 'The good faith get respect,cast quality market' is our Business philosophy . 

3.Having two series producttion line,with the abbual production capacity of 240000 tons.

4.Exceed International ISO9001:2008&ISO14001:2004 quality and environmental standards 

5.Meet with ROHS standard


Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q:What are the different heat treatment processes used for special steel?
There are several heat treatment processes commonly used for special steel, including annealing, normalizing, quenching, tempering, and case hardening. Annealing involves heating the steel to a specific temperature and then slowly cooling it, which helps to improve its ductility and relieve internal stresses. Normalizing is similar to annealing but involves air cooling the steel after heating, resulting in a more uniform grain structure. Quenching is a process where the steel is rapidly cooled in a liquid medium, such as water or oil, to achieve high hardness and strength. Tempering follows quenching and involves reheating the steel to a lower temperature, reducing its hardness and increasing toughness. Case hardening is a surface hardening process where the steel is heated in the presence of a carbon-rich material, creating a hardened outer layer while maintaining a softer core. These heat treatment processes are used to enhance the mechanical properties and performance of special steel for various applications.
Q:What are the requirements for special steel used in energy equipment manufacturing?
The requirements for special steel used in energy equipment manufacturing include high strength, excellent corrosion resistance, and the ability to withstand high temperatures and pressures. It also needs to meet specific industry standards, such as those related to safety, reliability, and environmental sustainability. Additionally, the steel should possess good weldability and machinability to facilitate the manufacturing process.
Q:How does special steel contribute to the manufacturing of springs for automotive applications?
Special steel is crucial for the manufacturing of springs in automotive applications because it offers high strength, durability, and excellent fatigue resistance. It allows springs to withstand heavy loads, vibrations, and extreme temperatures while maintaining their shape and performance over time. Special steel also provides flexibility in design, allowing for the production of springs with specific characteristics such as improved stability, reduced weight, and enhanced energy absorption. Overall, the use of special steel in spring manufacturing ensures reliable and efficient performance in automotive applications.
Q:How is special steel used in the production of precision tools?
Special steel is used in the production of precision tools due to its unique properties such as high hardness, wear resistance, and excellent dimensional stability. These qualities make special steel ideal for manufacturing tools that require high precision, such as drills, milling cutters, and lathe tools. The use of special steel in precision tool production ensures the durability and longevity of the tools, allowing them to maintain their accuracy over time, resulting in high-quality and precise machining operations.
Q:What are the emerging trends in special steel production?
There are several emerging trends in special steel production that are shaping the industry. 1) Increasing demand for high-performance alloys: With advancements in technology and industrial applications, there is a growing need for special steels with superior properties like high strength, corrosion resistance, and heat resistance. This has led to a higher demand for special alloys such as stainless steel, tool steel, and superalloys. 2) Adoption of advanced manufacturing techniques: Special steel production is witnessing a shift towards advanced manufacturing techniques like additive manufacturing (3D printing) and precision machining. These techniques allow for the production of complex geometries and customized components, leading to improved efficiency and reduced material waste. 3) Focus on sustainability: The steel industry is increasingly adopting sustainable practices to reduce its environmental footprint. This includes the use of recycled materials, energy-efficient production processes, and waste management strategies. As a result, special steel producers are investing in cleaner technologies to meet the growing demand for sustainable steel products. 4) Industry 4.0 integration: The integration of digital technologies, automation, and data analytics is revolutionizing the special steel production process. Industry 4.0 solutions enable real-time monitoring, predictive maintenance, and optimization of production parameters, resulting in increased productivity, quality, and cost-effectiveness. 5) Development of new alloys for emerging industries: With the rise of new industries such as aerospace, renewable energy, and electric vehicles, special steel producers are developing innovative alloys to meet their specific requirements. For example, the development of lightweight, high-strength steels for aerospace applications or corrosion-resistant steels for offshore wind turbines. 6) Global collaborations and partnerships: Special steel producers are increasingly collaborating with research institutions, universities, and other industry players to drive innovation and share knowledge. These collaborations help in developing new steel grades, exploring new applications, and improving production processes. Overall, the emerging trends in special steel production revolve around meeting the demand for high-performance alloys, adopting advanced manufacturing techniques, focusing on sustainability, integrating Industry 4.0 technologies, developing alloys for emerging industries, and fostering collaborations. These trends are shaping the future of special steel production, creating opportunities for growth and innovation in the industry.
Q:How does special steel perform in high-temperature corrosion?
Special steel is specifically designed to perform well in high-temperature corrosion environments. It possesses unique properties that make it highly resistant to oxidation and corrosive reactions at elevated temperatures. One of the key factors that contribute to special steel's performance in high-temperature corrosion is its high chromium content. Chromium forms a protective oxide layer on the surface of the steel, known as a passive film, which acts as a barrier against corrosive elements. This passive film is stable even at high temperatures, preventing the steel from undergoing oxidation and corrosion. Additionally, special steel often contains other alloying elements such as nickel, molybdenum, and titanium, which further enhance its resistance to high-temperature corrosion. These elements increase the steel's ability to withstand aggressive chemical environments, such as those encountered in industrial processes involving high temperatures and corrosive substances. Furthermore, special steel is known for its excellent mechanical properties, including high strength and toughness, which enable it to withstand the harsh conditions of high-temperature corrosion. It can maintain its structural integrity and dimensional stability even when exposed to extreme temperatures and corrosive chemicals. Overall, special steel's superior resistance to high-temperature corrosion makes it an ideal choice for various applications in industries such as petrochemical, power generation, and aerospace. Its ability to maintain its performance and durability in challenging environments ensures the longevity and reliability of equipment and structures, ultimately reducing maintenance and replacement costs.
Q:What are the specific requirements for special steel used in the power transmission industry?
The specific requirements for special steel used in the power transmission industry include high strength and durability to withstand heavy loads and vibrations, excellent corrosion resistance to withstand harsh environmental conditions, good electrical conductivity for efficient power transmission, and precise dimensional accuracy to ensure proper fit and alignment in power transmission components. Additionally, special steel used in this industry needs to have excellent fatigue resistance to withstand cyclic loading and prolonged stress, as well as good thermal stability to handle high temperatures generated during power transmission.
Q:What are the requirements for special steel used in power plants?
Given the critical role that these materials play in ensuring the safe and efficient operation of power generation facilities, the requirements for special steel used in power plants are specific and stringent. Here are some of the key requirements: 1. Withstanding high temperatures: Special steel used in power plants must maintain its structural integrity even at elevated temperatures, especially in areas like the combustion chamber or steam turbines. 2. Excellent corrosion resistance: Power plants often operate in environments with high levels of moisture, chemicals, and other corrosive elements. Special steel must be able to resist corrosion to prevent degradation and premature failure. 3. High strength and toughness: Power plants generate substantial amounts of energy, so the components made of special steel must be strong and tough enough to withstand mechanical stresses and loads. This includes resistance to fatigue, creep, and stress corrosion cracking. 4. Good weldability: Welding is often necessary during the fabrication or maintenance of power plant components. Special steel should have good weldability to ensure strong and reliable joints that maintain the overall system's structural integrity. 5. Low thermal expansion: Special steel used in power plants should have low thermal expansion properties to minimize the risk of thermal stress and distortion caused by temperature variations during operation. This prevents premature failure and ensures dimensional stability. 6. Resistance to radiation: In some power plants, such as nuclear facilities, special steel may be exposed to radiation. Therefore, the steel should have good resistance to radiation damage, ensuring long-term performance and safety. 7. Compliance with industry standards: Special steel used in power plants must meet specific industry standards and codes to ensure quality, reliability, and safety. These standards may include ASTM, ASME, or ISO, among others. Overall, the requirements for special steel used in power plants are driven by the need for high temperature resistance, corrosion resistance, strength, weldability, low thermal expansion, radiation resistance, and compliance with industry standards. Meeting these requirements ensures the integrity and longevity of power plant components, contributing to the safe and efficient generation of electricity.
Q:Is the steel column of the steel structure HM a special steel?
The mid flange H section steel HM (M for Middle English prefix) in GB/T 112631998 this standard inside, not special steel;
Q:What is the role of special steel in the construction industry?
Special steel plays a crucial role in the construction industry as it provides enhanced strength, durability, and resistance to corrosion. It is commonly used in the construction of high-rise buildings, bridges, and infrastructure projects, where structural integrity is crucial. Special steel's unique properties enable it to withstand extreme conditions and heavy loads, ensuring the safety and longevity of construction projects. Additionally, its versatility allows for the fabrication of various components, such as beams, columns, and reinforcement bars, making it an indispensable material in the construction industry.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords