• Alloyed Continue Casting Steel Bloom by Blast Furnace System 1
  • Alloyed Continue Casting Steel Bloom by Blast Furnace System 2
Alloyed Continue Casting Steel Bloom by Blast Furnace

Alloyed Continue Casting Steel Bloom by Blast Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Alloyed Steel Bloom by Blast Furnace with Chromium

 

1.Structure of Alloyed Steel Bloom by Blast Furnace with Chromium

 

Steel Blooms Manufactured by Continue Casting is the raw material of all kinds of steel mill. Bloom section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square Bloom or rectangular Bloom. rolling The sector products such as flat steel, Angle steel, select the rectangular Bloom or slab. Had better profiled Bloom when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round Bloom is the production of seamless tube. 


2.Main Features of Alloyed Steel Bloom by Blast Furnace with Chromium.

Steel Blooms Manufactured by Continue Casting section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Bloom section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel Bloom by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel Bloom, should consider the affinities of Bloom, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

      There are three shapes of the steel Bloomssquare Bloom, slab, rectangular Bloom The Chinese Bloom, rectangular Bloom is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.

 

 

3. Alloyed Steel Bloom by Blast Furnace with Chromium Images

 

 

Alloyed Continue Casting Steel Bloom by Blast Furnace

Alloyed Continue Casting Steel Bloom by Blast Furnace

 

 

 

 

4. Alloyed Steel Bloom by Blast Furnace with Chromium Specification

Steel Bloom by Blast Furnace with Chromium  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the Bloom. Steel Bloom is used in the production of semi-finished products, generally cannot be used directly for the society. Steel Blooms and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, Bloom and the steel is relatively easy to distinguish, but for some steel Bloom, and have the same specification and same steel purposes (such as rolling tube Bloom), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: Bloom: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Bloom section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm Bloom: no control; The slab: < = 15 mm Surface tilt: no more than Bloom section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of  Alloyed Continue Casting Steel Bloom by Blast Furnace

 

We have organized several common questions for our clients,may help you sincerely: 

 

①How about your company?

A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

②How to guarantee the quality of the products?

We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

 

③How is the packaging and delivery?

Exporting Package with the steel material cover and the delivery term is based on the project.

 

Q:What are the factors affecting the price of steel billets?
There are several factors that can affect the price of steel billets. 1. Supply and demand: Like any other commodity, the price of steel billets is influenced by the balance between supply and demand. If the demand for steel billets is high and the supply is limited, the price will increase. Conversely, if the supply exceeds the demand, the price will decrease. 2. Raw material costs: The cost of the raw materials used to produce steel billets, such as iron ore and coal, can significantly impact the price. Fluctuations in the prices of these raw materials can lead to changes in the cost of production, which in turn affects the price of steel billets. 3. Energy prices: The production of steel billets requires a significant amount of energy, particularly in the form of electricity and fuel. Therefore, changes in energy prices can have a direct impact on the price of steel billets. For example, if energy prices increase, the cost of production for steel billets will also rise, leading to a higher price. 4. Transportation costs: The cost of transporting steel billets from the manufacturing plant to the market can also affect the final price. Factors such as fuel prices, distance, and transportation infrastructure can impact the transportation costs and subsequently influence the price of steel billets. 5. Government regulations and trade policies: Government regulations, such as import/export duties, tariffs, and quotas, can have a significant impact on the price of steel billets. These policies can restrict or facilitate the movement of steel billets between countries, affecting the supply and demand dynamics and, consequently, the price. 6. Currency exchange rates: Steel billets are traded globally, and fluctuations in currency exchange rates can impact their price. If the currency in which steel billets are traded weakens against other currencies, the price of steel billets may increase to compensate for the decreased value of the currency. 7. Market speculation and investor sentiment: The price of steel billets, like any other commodity, can also be influenced by market speculation and investor sentiment. Factors such as economic indicators, geopolitical events, and investor expectations can drive buying or selling behavior, leading to price fluctuations. It is important to note that these factors are interconnected and can interact with each other, creating a complex and dynamic market for steel billets.
Q:What are the different methods of surface cleaning for steel billets?
Steel billets can be cleaned using various methods, each with its own benefits and applications. Let's explore these methods: 1. Shot Blasting: By propelling steel shots or grits at high speeds onto the billet surface, shot blasting effectively eliminates rust, mill scale, and other impurities, leaving behind a clean and textured surface. This technique is commonly employed to prepare billets for subsequent processes like painting or coating. 2. Acid Pickling: Acid pickling involves immersing the billets in an acid bath, typically hydrochloric or sulfuric acid. The acid reacts with surface oxides and scales, dissolving them and resulting in a clean surface. Acid pickling can remove a wide range of contaminants, but it must be carefully controlled to prevent hydrogen embrittlement. 3. Mechanical Cleaning: Mechanical cleaning techniques employ abrasive tools or equipment to physically scrub or scrape the billet surface. Wire brushes, abrasive pads, or sandpaper can be used to eliminate loose rust, scale, and dirt. This method is suitable for small-scale or localized cleaning but may be time-consuming for larger surfaces. 4. Water Jetting: Water jetting employs a high-pressure water stream to remove dirt, rust, and other contaminants from billet surfaces. The force of the water effectively eliminates loose debris without damaging the underlying steel. Water jetting is an environmentally friendly method that does not involve chemicals and is commonly used for light cleaning or maintenance purposes. 5. Chemical Cleaning: Chemical cleaning utilizes specialized chemicals or solutions to dissolve or neutralize contaminants on the billet surface. This method can be effective in removing stubborn stains, oils, or specific types of corrosion. However, careful selection and handling of chemicals are necessary to avoid any adverse effects on the steel or the environment. 6. Electrochemical Cleaning: Electrochemical cleaning, also known as electrolytic cleaning or electrocleaning, employs an electric current to remove surface contaminants. The billets are immersed in an electrolyte solution, and the application of an electric current causes the contaminants to dissolve or deposit onto an electrode. This method is particularly effective for removing organic contaminants or for precision cleaning. Each method possesses its own advantages and limitations. The choice of the appropriate surface cleaning method for steel billets depends on factors such as the type and severity of contamination, desired surface finish, and specific requirements of subsequent processes.
Q:What are the potential applications of steel billets in the electronics aftermarket?
The electronics aftermarket offers numerous possibilities for the use of steel billets. One potential application involves utilizing them for the production of electronic enclosures or casings. By machining and shaping steel billets, we can create robust and dependable enclosures that effectively safeguard electronic components. These enclosures provide durability and protection against environmental factors like moisture, dust, and impact. Furthermore, steel billets can play a role in manufacturing various electronic components. For instance, they can be employed to produce connectors, pins, sockets, and other essential small parts necessary for electronic devices. The high strength and conductivity of steel make it an ideal material for these components, ensuring reliable performance and efficient signal transmission. Additionally, steel billets find use in the creation of heat sinks for electronic devices. Heat sinks are vital in dissipating the heat generated by electronic components, preventing overheating, and potential performance issues or component failure. Steel's excellent thermal conductivity makes it a suitable material for heat sinks, allowing efficient heat transfer and ensuring the proper functioning of electronic devices. Moreover, steel billets can be utilized in manufacturing racks and cabinets used for housing and organizing electronic equipment. These structures provide a safe and secure environment for storing and accessing electronic devices in various settings, such as data centers, telecommunications facilities, or server rooms. Steel's durability and load-bearing capabilities make it an ideal choice for such applications, ensuring the protection and organization of electronic equipment. To summarize, steel billets offer a wide range of potential applications in the electronics aftermarket. Whether it is for producing enclosures, electronic components, heat sinks, or racks and cabinets, steel's strength, conductivity, durability, and thermal properties make it a versatile material for various electronic applications.
Q:How are steel billets used in the production of mining equipment?
Steel billets are used in the production of mining equipment as they serve as the raw materials for various components such as gears, shafts, and structural frames. These billets are shaped, machined, and welded to create strong and durable parts that can withstand the harsh conditions of mining operations.
Q:How are steel billets transported internationally?
Steel billets can be transported internationally through various means such as shipping containers, bulk carriers, or by rail and road transport. The choice of transportation method depends on factors like distance, cost, volume, and urgency of delivery.
Q:What are the different methods of steel billet cooling?
There are several different methods of steel billet cooling that are commonly used in the steel industry. These methods include air cooling, water cooling, and controlled cooling processes. One method of cooling steel billets is through air cooling. This involves allowing the billets to cool naturally in ambient air, without any additional cooling mechanisms. Air cooling is a simple and cost-effective method, but it may result in slower cooling rates and less controlled cooling conditions compared to other methods. Water cooling is another common method used to cool steel billets. This involves immersing the billets in water or spraying them with water to accelerate the cooling process. Water cooling provides more efficient and controlled cooling rates compared to air cooling. It allows for faster cooling and can help achieve desired material properties, such as increased hardness or improved microstructure. Controlled cooling processes are a more advanced method used to cool steel billets. These processes involve precise control of temperature and cooling rates to achieve specific material properties. One such process is known as quenching, which involves rapid cooling of the billets in a controlled medium, such as oil or water, to achieve a desired hardness. Another controlled cooling process is known as annealing, which involves slowly cooling the billets to relieve internal stresses and improve their machinability. In addition to these methods, there are also specialized cooling techniques, such as spray cooling and water mist cooling, that are used in specific applications or industries. These methods involve spraying a fine mist of water onto the billets to achieve rapid and uniform cooling. Overall, the choice of cooling method depends on various factors, such as the desired material properties, production requirements, and cost considerations. Different cooling methods offer different benefits and trade-offs, and it is important for steel manufacturers to select the most suitable method for their specific needs.
Q:What are the different types of steel billet inspection techniques?
There are several types of steel billet inspection techniques, including visual inspection, ultrasonic testing, magnetic particle testing, dye penetrant testing, and eddy current testing.
Q:How is a steel billet made?
Continuous casting is a common method used to produce steel billets. This process includes several steps that involve the gathering and processing of raw materials, the transformation of these materials into molten pig iron, and the refining of the molten pig iron in either a basic oxygen furnace or an electric arc furnace. In these refining furnaces, impurities are eliminated and alloying elements may be added to achieve specific properties. Once the molten steel is chemically balanced and refined, it is ready for casting. To do this, the steel is poured into a water-cooled copper mold known as a continuous caster. As it flows into the mold, the steel solidifies and takes the shape of a long rectangular or square billet. During the casting process, water is circulated through the mold to cool the steel quickly and aid in solidification. This controlled cooling ensures that the billet has a consistent structure and the desired mechanical properties. After solidification, the billet is cut into predetermined lengths using a torch or a shear. These billets can vary in size and weight depending on their intended use. Once cut, the billets can undergo further processing through rolling, forging, or other shaping methods to create various steel products such as bars, rods, tubes, or structural shapes. In summary, the production of a steel billet involves the transformation of raw materials into molten steel, the refining of the molten steel, and the casting of it into a solid shape using continuous casting. These billets then serve as the starting point for the production of a wide range of steel products used in various industries.
Q:What are the main factors affecting the magnetic properties of steel billets?
The main factors affecting the magnetic properties of steel billets are composition, microstructure, and processing conditions. Firstly, the composition of the steel billet plays a significant role in its magnetic properties. The presence of certain alloying elements, such as nickel, cobalt, and manganese, can enhance the magnetic properties of steel. These elements align the magnetic domains within the steel, resulting in increased magnetization and improved magnetic properties. Secondly, the microstructure of the steel billet affects its magnetic properties. The grain size, crystal structure, and presence of defects or impurities can influence the magnetic behavior of the material. Finer grain sizes tend to have better magnetic properties due to improved alignment of the magnetic domains. Additionally, a single-phase crystal structure is generally more magnetic than a multi-phase structure. Lastly, the processing conditions during the production of steel billets can impact their magnetic properties. Factors such as temperature, cooling rate, and mechanical deformation can affect the microstructure and, consequently, the magnetic behavior. For example, rapid cooling can result in a finer grain size and better magnetic properties, while mechanical deformation can induce magnetic anisotropy, making the steel more magnetically oriented along a specific direction. In summary, the magnetic properties of steel billets are mainly influenced by the composition, microstructure, and processing conditions. By controlling these factors, manufacturers can tailor the magnetic properties of steel billets to meet specific requirements for various applications, such as in electrical transformers, motors, or magnetic sensors.
Q:How are steel billets used in the production of railway wheels?
Steel billets are used in the production of railway wheels by being heated and then forged into the desired shape. This process helps to create a strong and durable wheel that is capable of withstanding the heavy loads and constant use in railway systems.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords