• Alloy Tool Steel 1.2510/o1/9CrWMn Special Steel System 1
  • Alloy Tool Steel 1.2510/o1/9CrWMn Special Steel System 2
  • Alloy Tool Steel 1.2510/o1/9CrWMn Special Steel System 3
Alloy Tool Steel 1.2510/o1/9CrWMn Special Steel

Alloy Tool Steel 1.2510/o1/9CrWMn Special Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Round Bar

Alloy Tool Steel 1.2510/o1/9CrWMn Special Steel

Product Information: 

1.Size: 

Flat: 12-120*205-610mm*2000-5000mm 

Rould:16-150*2000-5000mm

2.  Delivery condition: 

Hot rolled or foged,annealed ,EAF or ESR,black or milled surfaceSoften annealed: ≤ 255HB 

3.Application: 

Cold work die steel Widely applied in fabrication of blanking die, punching die, bending die and bernishing die with the thickness of not more than 8mm. 

Also widely applied in fabrication of gauges, measuring tools, woodwork cutters and lathe thimble, etc; 

Also widely applied in fabrication of guiding bush, thimble, screwing dies and taps, etc. 

4.Feature: 

Vacuum refining, with pure steel quality 

Spheroidal annealing to soften the tissue for easy cutting and processing 

Very high hardness in case of quenching 

 Very good size stability aftertempering

Product Overviews:

Product NameTypical GradesDiameter(mm)Standard adopted
Carbon Steel20 (1020/S20C/C22)Ø16-Ø300GB/SAE/JIS/DIN
40 (1040/S40C/C40)
45 (1045/S45C/C45)
Bearing SteelGCr9 (51100/SUJ1)Ø12-Ø250
GCr15 (52100/SUJ2/100Gr6)
GCr9SiMn (A485-Gr.1/SUJ3)
Cr-Mo Steel20Cr (5120/SCr420H/20Cr4)Ø12-Ø250
40Cr (5140/SCr440/41Cr4)
42CrMo(4140/SCM440/42CrMo4)
Gear Steel20CrNiMoØ16-Ø600
20CrMn(5115/SMnC420/20MnCr5)
20CrNiMo(8620/SNCM220/20CrMiMo2)

Product Show:

Alloy Tool Steel 1.2510/o1/9CrWMn Special Steel

Our Advantages:

· Industry experience over 20 years.

· Shipment of goods -More than 70 countries worldwide.

· The most convenient transport and prompt delivery.

· Competitive price with best service.

· High technical production line with top quality products.

· High reputation based on best quality products.

 

With our experienced, enthusiastic and dynamic staffs, we assure to bring you the products with best quality, reasonable prices and good after-sales services under the motto: Friends First, Business After.

Communication, Experience, Expertise and Best efforts are our Promises to you.


Q:Is special steel suitable for structural applications?
Yes, special steel is well-suited for structural applications. This type of steel is engineered to possess specific properties and characteristics that meet the demands of various applications. Industries such as construction, automotive, aerospace, and oil and gas often rely on special steel. The outstanding strength, durability, and resistance to corrosion of special steel make it an ideal material for structural applications. It can withstand heavy loads, high temperatures, and extreme weather conditions, ensuring the safety and longevity of structures. Furthermore, special steel offers excellent weldability, machinability, and formability, allowing for flexibility in design and construction. It can be easily shaped, fabricated, and assembled into various structural components, making it suitable for complex and unique projects. Moreover, special steel comes in a wide range of grades and types, each tailored to meet specific structural requirements. These include carbon steel, alloy steel, stainless steel, and tool steel, among others. This versatility enables engineers and designers to select the most suitable type of special steel for their specific application, ensuring optimal performance and cost-effectiveness. In conclusion, special steel is highly suitable for structural applications due to its exceptional strength, durability, resistance to corrosion, and design flexibility. The wide range of grades and types available allows engineers and designers to choose the most appropriate material for their specific project requirements.
Q:What are the specific requirements for special steel used in the railway wheel industry?
The specific requirements for special steel used in the railway wheel industry include high strength and durability to withstand heavy loads and constant rolling, excellent fatigue resistance to withstand repeated stress cycles, good wear resistance to minimize wear and tear, and sufficient toughness to resist fractures. The steel should also possess good heat treatment properties to ensure proper hardening and tempering for desired strength and hardness levels. Additionally, it should have low impurities and be capable of withstanding harsh operating conditions, such as extreme temperatures and corrosion, to ensure a long service life.
Q:What are the main corrosion resistance properties of special steel?
The main corrosion resistance properties of special steel include high resistance to rust, oxidation, and corrosion in various environments, such as acidic, alkaline, and marine conditions. Special steel is often alloyed with elements like chromium, nickel, and molybdenum, which form a protective layer on the surface and enhance its resistance to corrosion. Additionally, special steel may have a low carbon content, reducing the likelihood of corrosion caused by carbide precipitation. These properties make special steel a reliable choice for applications where resistance to corrosion is crucial, such as in the construction, automotive, and aerospace industries.
Q:How does special steel contribute to the dimensional stability of products?
Special steel is known for its high strength, durability, and resistance to deformation, making it an ideal material for enhancing the dimensional stability of products. By utilizing special steel in the manufacturing process, products are less likely to experience changes in shape or size due to external factors such as temperature fluctuations or mechanical stress. This improved dimensional stability ensures that the products maintain their intended form and functionality over time, leading to increased reliability and customer satisfaction.
Q:How does special steel contribute to the industrial equipment industry?
Special steel contributes to the industrial equipment industry by offering superior strength, durability, and resistance to corrosion and wear. It allows manufacturers to produce high-quality components and machinery that can withstand extreme conditions, resulting in longer equipment lifespan and improved performance. Additionally, special steel's versatility enables the production of complex shapes and sizes, leading to enhanced design possibilities and increased efficiency in various industrial applications.
Q:Can special steel be used in the production of surgical instruments?
Yes, special steel, such as stainless steel or titanium alloys, can be used in the production of surgical instruments. These materials offer excellent corrosion resistance, durability, and biocompatibility, making them suitable for surgical applications that require high precision and sterility.
Q:What are the cost considerations when using special steel?
When using special steel, there are several cost considerations that need to be taken into account. Firstly, the cost of the raw materials used to produce special steel can be significantly higher compared to regular steel. Special steel is often made from alloying elements such as chromium, nickel, or molybdenum, which can be more expensive than the iron and carbon used in regular steel production. These alloying elements improve the properties of the steel, making it stronger, more corrosion-resistant, or better suited for specific applications. Additionally, the production process for special steel may involve additional steps or specialized equipment, leading to increased manufacturing costs. This can include steps such as vacuum degassing, controlled cooling, or precision forging, all of which contribute to the quality and performance of the final product but can also add to the overall cost. Furthermore, because special steel is often tailored to meet specific requirements or industry standards, there may be additional testing and certification costs involved. These can include non-destructive testing, material analysis, or third-party inspections to ensure that the steel meets the required specifications. These additional quality control measures can add to the overall cost of using special steel. Finally, the demand and availability of special steel can also impact its cost. If the demand for certain types of special steel is high or the supply is limited, prices may be driven up. This can be particularly relevant for industries that require specialized steel grades, such as aerospace, automotive, or oil and gas. In summary, the cost considerations when using special steel include the higher cost of raw materials, the additional manufacturing steps, the testing and certification requirements, and the overall supply and demand dynamics of the market. However, it is important to note that the benefits and advantages of using special steel, such as improved performance, durability, or specific properties, can often outweigh the higher costs, making it a worthwhile investment for many industries.
Q:How does special steel contribute to the automotive aftermarket industry?
Special steel plays a significant role in the automotive aftermarket industry by offering various advantages that contribute to the overall performance, durability, and safety of vehicles. Firstly, special steel is known for its exceptional strength and durability. This property allows automotive manufacturers and aftermarket suppliers to develop high-performance components and parts that can withstand extreme conditions and heavy usage. Components such as engine parts, suspension systems, and chassis components benefit from the superior strength of special steel, ensuring their longevity and reliability. Additionally, special steel offers excellent corrosion resistance, which is crucial for automotive components exposed to various weather conditions and road environments. By using corrosion-resistant steel, aftermarket suppliers can produce parts that are less prone to rust and degradation, ultimately enhancing the lifespan of vehicles and reducing the need for frequent replacements. Furthermore, special steel enables the production of lightweight components without compromising on strength. With the increasing demand for fuel efficiency and reduced emissions, lightweight materials are highly sought after in the automotive industry. By utilizing special steel, aftermarket suppliers can create lightweight parts that contribute to improved fuel economy and overall performance of vehicles. Moreover, special steel's versatility allows for the development of complex and intricate components, contributing to advancements in vehicle technology. From precision-engineered gears and shafts to specialized parts for electric vehicles, special steel can be tailored to meet specific automotive requirements, supporting the industry's continuous innovation. Lastly, special steel offers cost-effectiveness in the automotive aftermarket industry. Although the initial cost of special steel might be higher than conventional steel, its durability and longevity result in reduced maintenance and replacement costs over time. This benefit is particularly significant for aftermarket suppliers and vehicle owners, as it helps minimize expenses and ensures a higher return on investment. In conclusion, special steel plays a vital role in the automotive aftermarket industry by providing strength, durability, corrosion resistance, lightweight properties, versatility, and cost-effectiveness. These qualities contribute to the overall performance, safety, and longevity of vehicles, making special steel a crucial material in the development of high-quality aftermarket components and parts.
Q:How does special steel withstand high temperatures?
Due to its distinctive composition and manufacturing process, special steel demonstrates exceptional resistance to high temperatures. Firstly, special steel incorporates alloys that consist of elements like chromium, nickel, and molybdenum, thus providing heightened heat resistance. These elements form a protective oxide layer on the steel's surface, effectively preventing oxidation and corrosion when exposed to elevated temperatures. Moreover, special steel undergoes specific heat treatment procedures, such as quenching and tempering, which enhance its strength and toughness. These procedures involve subjecting the steel to high temperatures followed by rapid cooling, and then reheating and slow cooling. This controlled heating and cooling process alters the steel's microstructure, resulting in increased resistance to thermal stress and deformation. Additionally, special steel is often designed with a high melting point, enabling it to maintain its structural integrity even in extreme temperature conditions. The precise combination and proportions of elements in the alloy contribute to the steel's ability to resist softening or melting when confronted with intense heat. Furthermore, special steel may also incorporate specialized coatings or treatments that further enhance its thermal resistance. These coatings provide an additional layer of protection against heat, oxidation, and corrosion, thereby enhancing the steel's durability and longevity in high-temperature environments. To sum up, special steel's ability to withstand high temperatures is attributed to its unique alloy composition, heat treatment processes, high melting point, and additional protective coatings. These factors work in harmony to enhance the steel's resistance to thermal stress, deformation, oxidation, and corrosion, making it a dependable and durable material for applications in extreme heat conditions.
Q:How are aluminum alloys used in the automotive industry?
Aluminum alloys are widely used in the automotive industry due to their advantageous properties, such as lightweight, high strength, and corrosion resistance. They are used in various components, including engine blocks, wheels, body panels, and suspension systems, to reduce the weight of vehicles and improve fuel efficiency. Additionally, aluminum alloys provide better heat dissipation, contributing to enhanced performance and longevity of automotive parts.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords